Master Thesis

Czech
Technical
University

in Prague

F3 Faculty of Electrical Engineering

Department of Measurement

Learning and automation GPIO platform

Bc. Ondfej Hruska

Supervisor: doc. Ing. Radislav Smid, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Sensors and Instrumentation
2018

ii

cTU MASTER'S THESIS ASSIGNMENT

C2ZECH TECHNICAL

UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N
Student's name: Hruska Ondrej Personal ID number: 420010

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Measurement
Study program: Cybernetics and Robotics

Branch of study: Sensors and Instrumentation
N

Il. Master’s thesis details
' N
Master's thesis title in English:

Learning and Automation GPIO Platform z

Master's thesis title in Czech:

gvyukové a automatizacni GPIO platforma 1

Guidelines:

| Design and implement a modular system consisting of a motherboard and additional modules for connecting sensors,
{ actuators and general inputs via 12C, SPI, UART, 1-Wire or other interfaces to the central system via USB, UART, and
{ wireless interfaces. Allow access to built-in processor peripherals such as ADC, DAC, and timers (PWM, frequency

| measurement). Design a comfortable way to set the configuration without firmware changes. For the designed system,
| create a service library in C, Python, and MATLAB.

i
|

L

Bibliography / sources:

{ [1] STMicroelectronics datasheets, http://www.st.com

‘ [2] Ganssle, J.: The Art of Designing Embedded Systems, Elsevier Science, 2008.

{ [3] Chi, Qingping & Yan, Hairong & Zhang, Chuan & Pang, Zhibo & Da Xu, Li. (2014).: A Reconfigurable Smart Sensor
‘F Interface for Industrial WSN in loT Environment. Industrial Informatics, IEEE Transactions on. 10. 1417-1425.

[10.1109/T11.2014.2306798.

Lo : —
Name and workplace of master’s thesis supervisor:

’ doc. Ing. Radislav Smid, Ph.D., Department of Measurement, FEL

Name and workplace of second master’s thesis supervisor or consultant:

i

Date of master’s thesis assignment: 10.01.2018 Deadline for master's thesis submission:

Assignment valid until:
by the end of summer semester 2018/2019

doc. Ing. Radislav Smid, Ph.D. Head of department's signature prof. Ing. Pavel Ripka, CSc.
Supervisor's signature Dean's signature

\ J
lll. Assignment receipt

thers,
of reference:

- Student's ‘s‘j‘jgnét‘ure

e

© CVUT v Praze, Design: CVUT v Praze, VIC

CVUT-CZ-ZDP-2015.1

iv

Declaration

Prohlasuji, ze jsem predlozenou préci vypracoval samostatné a ze jsem uvedl veskeré
pouzité informacni zdroje v souladu s Metodickym pokynem o dodrzovani etickych
principt pri pripravé vysokoskolskych zavéreénych praci.

V Praze, 25. kvétna 2018

Foreword

Before you lies the work of many long days and sleepless nights, the result of years of
study and planning. This work is released to the commons as a payback for the many
open-source projects that allowed it to become what it has.

I would like to thank my tutors for the knowledge, and to my friends for the encour-
agement to pull this off and create something I can be proud of.

Special thanks go to:

e Annie, for showing me Draw.io, and its developers, for building a great and free
diagram drawing tool.

o Beatrix, for keeping a friendly server where I could hang out in the breaks between
writing.

e Cpsdgs and others who helped with proofreading.

o TeXstudio developers, the TeX StackExchange community, and CTAN contributors,
without whom this paper would have been much harder to write.

May the project prosper and be helpful to many.

Ondrej Hruska
Prague, May 21, 2018

vi

Abstract

This thesis documents the development of a universal software and hardware platform
providing high-level user applications running on a PC with access to GPIO pins, hardware
buses, and signal acquisition and generation functions, using USB, USART, or a wireless
connection.

The requirements of common engineering tasks and problems occurring in the university
environment were evaluated to design an extensible, reconfigurable hardware module
that would make a versatile and low-cost tool that in some cases eliminates the need for
professional measurement and testing equipment.

We designed custom hardware modules, an extensible microcontroller firmware, and
PC support libraries for programming languages C and Python. The Python library may
further be used in MATLAB scripts. The devices provide access to hardware buses (I2C,
SPI, USART, and 1-Wire) and microcontroller peripherals (GPIO, ADC, and DAC),
implement frequency measurement and other useful features. They are configured in INI
files accessed through on a virtual USB mass storage device, or programmatically.

Keywords: STM32, hardware design, electronics, embedded, automation, USB, data
acquisition, gateway, wireless

Supervisor: doc. Ing. Radislav Smid, Ph.D.

Abstrakt

Tato prace popisuje vyvoj univerzalni softwarové a hardwarové platformy pro pristup
k hardwarovym sbérnicim a elektrickym obvodim z prostiedi vysokourovnovych pro-
gramovacich jazyki a aplikaci bézicich na PC, a to za vyuziti USB, UARTU a také
bezdratove.

Byly vyhodnoceny pozadavky typickych problému vyskytujicich se pii praci s vesta-
vénymi systémy a ve vyuce za Ucelem navrhu snadno rozsiritelného a prenastavitleného
hardwarového modulu ktery bude praktickym, pohodlnym a dostupnym nastrojem, ktery
navic v nékterych pripadech miize nahradit profesionalni laboratorni pristroje.

Bylo navrzeno nékolik prototypt hardwarovych modult spolu s obsluznymi knihovnami
v jazycich C a Python; Python knihovnu lze déle pouzivat z prostfedi MATLAB. Navrzené
moduly umoziiuji ptistup k vétsing bé&znych hardwarovych sbérnic (I?C, SPI, USART,
1-Wire) a umoznuji také mérit frekvenci a vzorkovat ¢i generovat analogové signaly.

Klicova slova: STM32, hardware, vestavéné systémy, elektronika, automatizace, USB,
sbér dat

Preklad nazvu: Vyukova a automatizacni GPIO platforma

vii

Contents

Part |
Introduction
1 Motivation 3
1.1 Expected OUtCOme.ot 4
2 Requirement Analysis 5
2.1 Desired Featureso e 5
2.1.1 Interfacing Intelligent Modules i 5
2.1.2 Analog Signal AcquisSitiont 6
2.1.3 Analog Signal Output 6
2.1.4 Logic Level Input and Output i 6
2.1.5 Pulse Generation and Measurementouuiiiienenenan. .. 6
2.2 Connection to the Host Computer 7
2.2.1 Communication Interface i 7
2.2.2 Configuration Files. e 7
2.3 An Overview of Planned Features........... 7
2.4 Microcontroller Selection i 8
2.5 Form Factor Considerations i 8
3 Existing Solutions 11
3.1 Raspberry Pi. ... 11
3.2 Bus Pirateo 12
3.3 Professional DAQ Modules 12
Part Il
Theoretical Background
4 Universal Serial Bus 17
4.1 Basic Principles and Terminology i i 17
4.1.1 Pipes and Endpoints 17
4.1.2 Transfer Typesottt 18
4.1.3 Interfaces and Classesoui it 18
4.1.4 DeSCriptors .« v vv ittt 19
4.2 USB Physical Layer e e 21

4.3 USB ClaSSES .« vttt ettt e e e e e e e e
4.3.1 Mass Storage Classttt
4.3.2 CDC/ACM CIaSS . . o v vvt e e e e e e e e e

4.3.3 Interface Association: Composite Class

5 FreeRTOS

5.1 Basic FreeRTOS Concepts and Functions
0.1 Tasks .o
5.1.2 Synchronization Objectso i

5.2 Stack Overflow Protection i

6 The FAT16 File System and lts Emulation

6.1 The General Structure of the FAT File System
6.1.1 BoOt SeCtor . .. oo
6.1.2 File Allocation Table
6.1.3 Root Directoryo

6.2 FAT16 Emulationot
6.2.1 DAPLink Emulator
6.2.2 Read ACCESS ..ottt
6.2.3 WIite ACCESS .ottt
6.2.4 File Name Change
6.2.5 File Creation
6.2.6 File Content Changet

7 Supported Hardware Buses
T1TUART and USART ... o e

ix

25
25
25
26
27

29
29
30
30
30
32
32
32
33
33
34
34

7.5 NeoPixel ...,

8 Non-communication Hardware Functions

8.1 Frequency Measurementttt

8.2 Analog Signal Acquisition........ ... i

8.3 Waveform Generation
8.3.1 Waveform Generation with DMA and a Timer.........................
8.3.2 Direct Digital Synthesis

8.4 Touch Sensingt

Part Il
Implementation

9 Conceptual Overview

9.1 Physical User Interface i

9.2 GEX-PC Connection e

9.3 Controlling GEX

9.4 Device Configuration
9.4.1 INI File Format e

9.4.2 Configuration Files Structure......... i

10 Internal Application Structure
10.1 Internal Structure Block Diagram
10.2 Unit Life Cycle and Internal Structure.............
10.3 Resource Allocationt
10.4 Settings SOTAZE . . . oo vttt e
10.5 Message Passing
10.6 Interrupt Routing.
10.7 FreeRTOS Synchronization Objects Usage
10.7.1 Message and Job Queue
10.7.2 Lock ObJects .« . oot

11 Working with the GEX Source Code
11.1 Porting to a New Platform i

12 Communication Protocol 71

12.1 Binary Payload Structure Notation 71
12.2 Frame Structuret e 72
12.3 Message Listeners. e e 72
12.4 Designated Frame Types.o e 72
12.5 Bulk Read and Write Transactions 73
12.5.1 Bulk Read o 74
12.5.2 Bulk Write. . ..o 74
12.5.3 Persisting the Changed Configuration to Flash 75
12.6 Reading the List of Units e 75
12.7 Unit Requests and Reports i 76
12.7.1 Unit Requestso 76
12.7.2 Unit Reports . ..o o 76
13 Units Overview, Commands and Events Description 79
13.1 General NOteso o i 79
13.1.1 Unit Namingo e 79
13.1.2 Packed Pin AcCCesS . ..ottt 79
13.2 Digital Outputo 80
13.2.1 Digital Output Configuration.......... 80
13.2.2 Digital Output Commands i 80
13.3 Digital Inputo 81
13.3.1 Digital Input Configuration 81
13.3.2 Digital Input Events 82
13.3.3 Digital Input Commands i 82
13.4 SIPO (Shift Register) Unit............ i 82
13.4.1 SIPO Configurationt e 83
13.4.2 STPO Commandstt e 83
13.5 NeoPixel Unito 84
13.5.1 NeoPixel Configurationt 84
13.5.2 NeoPixel Commands e 84
13.6 SPT Unit . ..o 85

Xi

13.6.1 SPI Configurationo i 85

13.6.2 SPI Commandsottt 86
137 PO URIb . . ottt e 86
13.7.1 I2C Configurationoourte e 87
13.7.2 I2C Commands ovvte e e e e 87
138 USART Unit v ovo ettt e e e e e e e e e e e e e e e 88
13.8.1 USART Configuration 88
13.8.2 USART Eventsottt e e e 89
13.8.3 USART Commandsttt 89
13.9 1-Wire Unit . .. oo 90
13.9.1 1-Wire Configuration e 90
13.9.2 1-Wire Commandsottt 90
13.10 Frequency Capture Unit e 91
13.10.1 Value Conversion Formulas 91
13.10.2 Frequency Capture Configuration, 92
13.10.3 Frequency Capture Commandsoiinininneninenanen.... 92
1311 ADC Unit oot e e e e 94
13.11.1 ADC Configurationiuiimi e 95
13.11.2 ADC Events . ..ottt e e 96
13.11.3 ADC Commandsttt 96
1312 DAC Unit oot e e e e 98
13.12.1 DAC Configuration 98
13.12.2 DAC Commands.ottt 98
1313 PWM Unit ..ot e e e e e 100
13.13.1 PWM Configuration, 100
13.13.2 PWM Commands ovt ettt e e 100
13.14 Touch Sense Unito 101
13.14.1 Touch Sense Configuration 101
13.14.2 Touch Sense Events 102
13.14.3 Touch Sense Commandsc. ..ttt nnenen... 102

xii

14 Wireless Interface 103

14.1 Modulations OVerviewttt et 103
14.1.1 On-Off Keying (OOK)o e 103
14.1.2 Frequency Shift Keying (FSK)........ i 104
14.1.3 Gaussian Frequency Shift Keying (GFSK) 104
14.1.4 Minimum-Shift Keying (MSK) i i 104
14.1.5 Gaussian Minimum-Shift Keying (GMSK) 104
14.1.6 LoRa Modulation 104

14.2 Comparing SX1276 and nRF24L01+ o i 104

14.3 Wireless Link with the nRF24L01+ i 105
14.3.1 The Wireless Gateway oottt e 106
14.3.2 The Gateway Protocol 106
14.3.3 Gateway Initialization Procedure 107

15 Hardware Realization 109

15.1 GEX on a STM32 Discovery Board 109
15.1.1 Discovery STM32F072 Configuration and Pin Mapping 109

15.2 GEX Hub ..o 110
15.2.1 GEX Hub Errata o 110

15.3 GEX ZEI0 . . oot 111
15.3.1 Pin Assignment 112

15.4 GEX Zero Errata 113

15.5 Wireless Gatewayot 113

16 Client Software 117

16.1 General Library Structure 117

16.2 Python Library 117
16.2.1 Example Python Script........... . i 118

16.3 MATLAB integration 118

16.4 C LADrary . . .o oo e 119
16.4.1 Structure-based Payload Construction 120
16.4.2 Using the Payload Builder Utility 120

xiii

17 Example Applications

Part IV
Results

17.1 Frequency Response Measurement,

17.2 Measuring COg Concentration.,

17.3 Controlling the “Micro Dot pHAT”

17.4 Capturing Transient Effects .

18 Discussion

18.1 Solution Summary

18.2 Results and Possible Applications.

18.3 Comparison with Existing Solutions......... o ...

18.4 Limitations

18.5 Future Development

19 Conclusion

Bibliography

A GEX Hub Schematics

A.1 GEX Hub Revision 1
A.2 GEX Hub Revision 2

B GEX Zero Schematics

B.1 GEX Zero Revision 1
B.2 GEX Zero Revision 2

C Wireless Gateway Schematics

C.1 Wireless Gateway Revision 1

Appendices

Xiv

127
127
128
129
129

133
133
134
135
135
136

137

139

147
147
148

149
149
150

151

Figures

1.1 A collection of intelligent sensors and devices......... 3
2.1 A Discovery board with STM32F072 i 9
2.2 Form factor sketches i 9
3.1 Raspberry Pi minicomputers 11
3.2 Bus Pirate v.4 (photo taken from [1]), 12
3.3 Professional tools that GEX can replace 13
4.1 USB hierarchical Structuret 17
4.2 The logical structure of USB 18
4.3 USB descriptors of a GEX prototype obtained using “lsusb”................ 20
4.4 USB pull-ups. . oo 21
6.1 An example of the GEX virtual file system........... 31
7.1 UART frame format it 35
7.2 SPI timing diagram 37
7.3 SPI master with multiple slaves 37
7.4 I2C message dia@ramttt 38
7.5 1-Wire connection topology with four slave devices.............. 39
7.6 GEX prototype driving a strip of 5 NeoPixels 41
8.1 Direct frequency measurement method 44
8.2 Reciprocal frequency measurement method................................ 44
8.3 Frequency measurement methods comparison................ 45
8.4 A diagram of the SAR type ADC 46
8.5 A simple implementation of the waveform generator........................ 47
8.6 A block diagram of a DDS-based waveform generator....................... 48
8.7 The touch slider on a STM32F072 Discovery board 49
8.8 A simplified schematic of the touch sensing circuit 49
8.9 TSC operation oscilloscope screenshots 50
9.1 GEX conceptual OVEIVIEW oottt ettt et 53

XV

9.2 Physical user interface of a GEX module............ 54

9.3 Configuration file editor GUIL 59
10.1 Block diagram showing the internal logic in the GEX firmware 61
10.2 An example allocation in the resource registry 63
10.3 Structure of the settings subsystem 63
11.1 General structure of the source code repository 67
12.1 TinyFrame APT ... 71
12.2 The bulk read and write transactions. 75
13.1 Pin packingo v 80
13.2 SPI transaction using the QUERY command 85
13.3 Principle of DMA-based UART reception 88
13.4 Principle of DMA-based ADC sampling 95
14.1 Test setup with a GEX prototype controlling two nRF24L01+ modules 103
14.2 Wireless connection block diagram 106
15.1 The GEX Hub module 110
15.2 GEX Zero compared to Raspberry PiZero 111
15.3 The GEX Zero module 112
15.4 GEX Zero back side.ot 113
15.5 The wireless gateway (top and bottom side) 114
16.1 GEX Zero with the Micro Dot pHAT add-on board 120
16.2 A demonstration of the MATLAB/Python integration 121
17.1 GEX Zero measuring a passive high-pass RC filter 127
17.2 RC filter frequency reSponSeso ov vttt e 128
17.3 Demo with a COg SEnSOr i e 128
17.4 Capacitor charging waveform captured by the ADC unit.................. 130
17.5 The “lightning trap” circuit i 130
17.6 Captured lightning strikes i 131

xXvi

Tables

6.1 Areas of a FAT-formatted disk i 29
6.2 Structure of a FAT16 directory entry 31
7.1 NeoPixel pulse timing 40
12.1 Frame types used by GEX 73
14.1 Comparison of the SX1276 and nRF24L01+ wireless transceivers 105
15.1 Comparison of the RPI Zero and GEX Zero GPIO headers................ 115

xXvii

xviii

Part |

Introduction

Chapter 1

Motivation

Prototyping, design evaluation, and the measurement of physical properties in experiments
make a daily occurrence in the engineering praxis. Those tasks often involve the generation
and sampling of electrical signals coming to and from sensors, actuators, and other circuitry.

Recently, a wide range of intelligent sensors became available thanks to the drive to
miniaturization in the consumer electronics industry (Figure 1.1). Those devices often
provide sufficient accuracy and precision while keeping the circuit complexity and cost low.
In contrast to analog sensors, here the signal conditioning and processing circuits are built
into the sensor itself, and we access it through a digital connection.

Figure 1.1: A collection of intelligent sensors and devices, most on breadboard adapters: (from
the top left) a waveform generator, a gesture detector, a LoRa and two Bluetooth modules,
an air quality and pressure sensor, a CO5 sensor, a digital compass, an accelerometer, a GPS
module, a camera, an ultrasonic range finder, a humidity sensor, a 1-Wire thermometer, a color
detector, and an RGB LED strip

If we wish to conduct experiments with these integrated modules, or just familiarize
ourselves with a device before using it in a project, we need an easy way to interact with
them. It would also be convenient to have direct access to low-level hardware, be it analog
signal sampling, generation, or even just the access to logic inputs and outputs. However,
advances in computer technology, namely the advent of the Universal Serial Bus (USB),

3

1. Motivation

lead to the disappearance of low-level computer ports, such as the printer port (LPT), that
would provide an easy way of doing so.

Today, when we want to perform measurements using a digital sensor, the usual route
is to implement embedded firmware for a microcontroller that connects to the personal
computer (PC) through USB, or perhaps shows the results on a display. This approach
has its advantages, but is time-consuming and requires specific knowledge unrelated to
the measurements we wish to perform. It would be advantageous to have a way to access
hardware without having to burden ourselves with the technicalities of this connection,
even at the cost of lower performance compared to specialized devices or professional tools.

The design and implementation of such a universal instrument is the object of this work.
For technical reasons, such as naming the source code repositories, we need a name for the
project; it shall be hereafter called GEX, a name derived from “GPIO Expander”.

B 11 Expected Outcome

It has been a long-time desire of the author to create a universal instrument connecting
low-level hardware to a computer, and, with this project, it is finally being realized. Several
related projects approaching this problem from different angles can be found on the internet;
some of these will be presented in Chapter 3.

Our project is not meant to end as a tinkering tool that will be produced in a few
prototypes and then forgotten. By creating an extensible, open-source platform, GEX can
become the foundation for future projects which others can expand, re-use, and adapt to
their specific needs.

Building on the experience with earlier embedded projects, an STM32 microcontroller
will be used. Those are Arm Cortex-M devices with a wide range of hardware peripherals
that should be a good fit for the project. Low-cost evaluation boards are available that could
be used as a hardware platform instead of developing a custom printed circuit board (PCB).
STM32 microcontrollers are affordable and already popular in the embedded hardware
community, so there is a real possibility of the project gathering a community around it
and growing beyond what will be presented in this paper.

Chapter 2

Requirement Analysis

We’ll now investigate some situations where GEX could be used, to establish its requirements
and desired features.

. 2.1 Desired Features

B 2.1.1 Interfacing Intelligent Modules

When adding a new digital sensor or a module to a hardware project, we want to test it
first, learn how to properly communicate with it, and confirm its performance. Based on
this evaluation we decide whether the module matches our expectations, and learn how to
properly connect it, which is needed for a successful PCB design. In experimental setups,
this connection may be the only thing we need. Sensor data can be collected immediately
after gaining access to its communication interface, and the same applies to controlling
actuators or other devices.

A couple of well known hardware buses have established themselves as the standard
ways to interface digital sensors and modules: Serial Peripheral Interconnect (SPI), Inter-
Integrated Circuit (I?C) and Universal Synchronous/Asynchronous Receiver/Transmitter
(USART) (UART in asynchronous mode) are some of the most common ones, often
accompanied by a few extra general purpose input/output (GPIO) lines for features such as
Reset, Chip Enable, or Interrupt. There are exceptions where silicon vendors have developed
proprietary communication protocols that continue to be used either for historical reasons,
or because of their specific advantages. An example is the Dallas Semiconductor 1-Wire
bus used in digital thermometers.

Moving to industrial and automotive environments, we encounter various fieldbuses,
Ethernet, Controller Area Network (CAN), current loop, Highway Addressable Remote
Transducer (HART), Local Interconnect Network (LIN), Digital Addressable Lighting
Interface (DALI), RS-485 (e.g., for Modbus), Meter Bus (M-Bus), PLC-BUS, and others.
Those typically use transceiver integrated circuits (ICs) and other circuitry, such as transiet-
voltage suppressors (TVSs), signal filters, or galvanic isolation. They could be supported
using add-on boards and additional firmware modules handling the protocol. For simplicity
and to meet time constraints, the development of those boards and modules will be left for
future expansions of the project.

2. Requirement Analysis

B 2.1.2 Analog Signal Acquisition

Sometimes it is necessary to use a traditional analog sensor, capture a transient waveform,
or to just measure voltage. GEX is meant to focus on digital interfaces, however giving
it this capability makes it much more versatile. Nearly all microcontrollers include an
analog/digital converter (ADC) which we can use to measure input voltages and, paired
with a timer, to records signals varying in time.

Certain tasks, such as capturing transient effects on a thermocouple when inserted into
a flame (an example from developing fire-proof materials) demand level triggering similar
to that of oscilloscopes. The converter continuously measures the input voltage and a
timed capture starts only after a set threshold is exceeded. This can be accompanied by a
pre-trigger feature where the timed capture is continuously running and the last sample is
always compared with the threshold, recording a portion of the historic records together
with the following samples.

B 2.1.3 Analog Signal Output

An analog signal can not only be measured, but it is often necessary to also generate it.
This could serve as an excitation signal for an experiment, for instance to measure the
characteristic curves of a diode or a transistor. Conveniently, we can at the same time use
GEX’s analog input to record the output.

Generating an analog signal is possible using a pulse width modulation (PWM) or by a
dedicated digital-analog converter included in many microcontrollers. Higher frequencies or
resolution can be achieved with a dedicated external IC.

B 2.1.4 Logic Level Input and Output

We have covered some more advanced features, but skipped the simplest feature: direct
access to GPIO pins. Considering the latencies of USB and the PC’s operating system
(OS), this cannot be used reliably for “bit banging”; however, we can still accomplish a lot
with just changing logic levels—e.g., to control character liquid crystal displays (LCDs), or
emulate some interfaces that include a clock line, like SPI. As mentioned in Section 2.1.1,
many digital sensors and modules use plain GPIOs in addition to the communication bus
for out-of-band signaling or features like chip selection or reset.

B 2.1.5 Pulse Generation and Measurement

Some sensors have a variable frequency or a PWM output. To capture those signals and
convert them to a more useful digital value, we can use the external input functions of a
timer /counter in the microcontroller. Those timers have many possible configurations and
can also be used for pulse counting or waveform generation.

2.2. Connection to the Host Computer

. 2.2 Connection to the Host Computer

B 2.2.1 Communication Interface

USB shall be the primary way of connecting the module to a host PC. Thanks to USB’s
flexibility, it can present itself as any kind of device or even multiple devices at once.

The most straightforward method of interfacing the board is by passing binary messages in
a fashion similar to UART. We’ll need a duplex connection to enable command confirmations,
query-type commands and asynchronous event reporting. This is possible either using a
“Virtual COM port” driver, or through raw access to the corresponding USB endpoints.
Using raw access avoids potential problems with the OS’s driver interfering or not recognizing
the device correctly; on the other hand, having GEX appear as a serial port makes it easier
to integrate into existing platforms that have good serial port support (such as National
Instruments LabWindows CVI or MATLAB).

A connection using a hardware UART is also planned, as a fallback for boards without
an USB connector or for platforms with no USB connectivity. A wireless connection to the
host PC should also be possible and work transparently in a similar way to the USB or
UART connection.

B 2.2.2 Configuration Files

The module must be easily reconfigurable. Given the settings are almost always going to
be tied to the connected external hardware, it would be practical to have an option to store
them permanently in the microcontroller’s non-volatile memory.

We can load those settings into GEX using the serial interface, which also makes it
possible to reconfigure it remotely when the wireless connection is used. With USB, we can
additionally make the board appear as a mass storage device and expose the configuration as
text files. This approach, inspired by Arm Mbed’s mechanism for flashing firmware images
to development kits, avoids the need to create a configuration graphical user interface
(GUI), instead using the built-in applications of the PC OS to view and edit files. Besides
the configuration files, we can expose additional information, such as a README file with
instructions, or a pin-out reference, as separate files on the virtual disk.

. 2.3 An Overview of Planned Features

Summarizing the preceding discussion, we obtain the following list of features to implement
in the GEX firmware:
¢ Hardware interfacing functions

— I/O pin direct access (read, write), pin change interrupt
— Analog input: voltage measurement, sampled capture

— Analog output: static level, waveform generation

7

2. Requirement Analysis

— Frequency, duty cycle, pulse length measurement
— Single pulse and PWM generation
— SPI, I2C, UART/USART, 1-Wire

¢ Communication with the host computer

— USB connection as virtual serial port or direct endpoint access
— Connection using plain UART

— Wireless attachment
o Configuration

— Fully reconfigurable, temporarily or permanently
— Settings stored in INT files

— File access through the communication interface or using a virtual mass storage

. 2.4 Microcontroller Selection

As discussed in Section 1.1, this project will be based on microcontrollers from the STM32
family. The STM32F072 model was selected for the initial hardware and firmware design
due to its low cost, advanced peripherals, and the availability of development boards. The
firmware can be ported to other microcontroller units (MCUs) later (e.g., to STM32L072,
STM32F103 or STM32F303).

The STM32F072 is an Arm Cortex-M device with 128 KiB of flash memory, 16 KiB
of random-access memory (RAM) and running at 48 MHz. It is equipped with a USB
Full Speed peripheral block, a 12-bit ADC and digital/analog converter (DAC), a number
of general-purpose timers/counters, SPI, I?C, and USART peripherals, among others. It
supports crystal-less USB, using the USB SOF packet for synchronization of the internal
48 MHz RC oscillator; naturally, a real crystal resonator will provide better timing accuracy.

To effectively utilize the time available for this work, only the STM32F072 firmware will
be developed while making sure the planned expansion is as straightforward as possible.

. 2.5 Form Factor Considerations

While the GEX firmware can be used with existing evaluation boards from ST Microelec-
tronics (Figure 2.1), we wish to design and realize a few custom hardware prototypes that
will be smaller and more convenient to use.

Three possible form factors are drawn in Figure 2.2. The use of a common connector
layout and pin assignments, here Arduino and Raspberry Pi, makes it possible to reuse
add-on boards from those platforms. When we copy the physical form factor of another
product, in this example the Raspberry Pi Zero, we can further take advantage of existing
enclosures designed for it.

2.5. Form Factor Considerations

Figure 2.1: A Discovery development board with the STM32F072 microcontroller

Figure 2.2: A sketch of three possible form factors for a GEX hardware realization

10

Chapter 3

Existing Solutions

The idea of making it easier to interact with low-level hardware from a PC is not new.
Several solutions to this problem have been developed, each with its own advantages and
drawbacks. Some examples will be presented in this chapter.

B 31 Raspberry Pi

»

(a) : Raspberry Pi 3 Model B

(b) : Raspberry Pi Zero W

Figure 3.1: Raspberry Pi minicomputers

The Raspberry Pi (Figure 3.1) is a low-cost minicomputer targeted at school environments
and hobbyists. It is often used for home automation, as a simple web server, or built into
projects that take advantage of its powerful processor, such as wildlife camera traps, or
data acquisition devices with in-situ processing.

The board’s GPIO header, a row of pins supporting features such as SPI, I?C, UART,
or PWM, directly accessible by user applications running on the minicomputer, was one of
the inspirations behind GEX.

The Raspberry Pi’s functionality clearly overlaps with features we wish to support in
GEX. Its processor is powerful enough for a regular OS with a graphical user interface, and
after attaching a display and a keyboard, it can be used as a PC. However, when we have
a more powerful computer available and only want to extend it with the GPIO header,
having to use the Raspberry Pi seems inconvenient; this might be overcome with the use of
screen sharing or Secure Shell (SSH), but a low-complexity solution like GEX certainly has
its appeal.

11

3. Existing Solutions

B 3.2 Bus Pirate

Figure 3.2: Bus Pirate v.4 (photo taken from [1])

Bus Pirate [2] is a USB-attached device providing access to hardware interfaces like SPI, I°C,
USART, and 1-Wire, as well as features like frequency measurement and direct pin access.
The board aims to make it easy for users to familiarize themselves with unknown chips and
modules; it also provides a range of programming interfaces to program microcontrollers
and memory chips. The board communicates with the PC using an FTDI USB-serial
adapter.

Bus Pirate is open source and is, in its scope, similar to GEX. It can be scripted
and controlled from the PC, connects to USB and provides a wide selection of hardware
interfaces.

The board is based on a PIC16 microcontroller running at 32 MHz. Its ADC only has a
resolution of 10 bits (1024 levels). There is no DAC available on the chip, which makes
applications that require a varied output voltage more difficult to implement. Another
limitation of the board is its low number of GPIO pins, which may be insufficient for certain
applications; this, however, is not a hindrance to its main purpose as a bus analyzer and
tinkering tool.

The Bus Pirate is available for purchase at around 30 USD (at the time of writing), a
price comparable to some Raspberry Pi models.

. 3.3 Professional DAQ Modules

Various professional tools that would fulfill our needs exist on the market, but their high price
makes them inaccessible for users with a limited budget, such as hobbyists or students who
would like to keep such a device for personal use. An example is the National Instruments
1?C/SPI Interface Device which also includes several GPIO lines, their USB DAQ module,
or some of the Total Phase I?C/SPI gadgets (Figure 3.3).

The performance GEX can provide may not always match that of those professional
tools, but in many cases it will be a sufficient substitute at a fraction of the cost.

12

3.3. Professional DAR Modules

Digital
BIVODIOAIDION

1ONAL
ﬂn?vrnumms

Sopuy

inputs, 12 10 KS/s M nction /0
8 Inputs, 12-0i, 1045 tifu

®n

o n

XYY ELEX

,,//

| —

(a) : NI I>C/SPI Interface Device
(b) : NI USB DAQ module

(c) : Total Phase SPI/I>C Host “Aardwark”

Figure 3.3: An example of professional tools that GEX could replace in less demanding scenarios
(pictures taken from marketing materials: [3, 4, 5])

13

14

Part ||

Theoretical Background

15

16

Chapter 4

Universal Serial Bus

This chapter presents an overview of the Universal Serial Bus (USB) Full Speed interface,
with focus on the features used in the GEX firmware. USB is a versatile and powerful
interface which replaces several older technologies; for this reason its specification is very
complex and going into all details is hardly possible. We will cover the basic principles and
terminology of USB and focus on the parts relevant for the GEX project. More information
about the bus can be found in the official specification [6], related documents published by
the USB Implementers Forum, and other on-line resources [7, 8].

. 4.1 Basic Principles and Terminology

...................

Host (PC)

Embedded

Hub
N

A J Y Y
[Dtraag\llg:g] [Flash disk] [Keyboard] [Mouse] [GEX] [Camera] [Scanner]

Figure 4.1: The hierarchical structure of the USB bus

Hub —> Hub

USB is a hierarchical bus (Figure 4.1) with a single master (host) and multiple slave
devices. A USB device that provides functionality to the host is called a function [9)].

B 4.1.1 Pipes and Endpoints

Communication between the host and a function is organized into virtual channels called
pipes connecting to the device’s endpoints, identified by endpoint numbers. Pipes and
endpoints are a high level abstraction of the connection between the host and a device
(Figure 4.2).

Endpoints can be either unidirectional or bidirectional; the direction from the host to a
function is called OUT, the other direction (function to host) is called IN. A bidirectional
endpoint is technically composed of IN and OUT endpoints with the same number. All

17

4. Universal Serial Bus

USB host USB device
Application software [~~~ “Interface 77" Function
USB driver (libUSB) “ccreo p' if)é's' ik Bl USB Device library
GEX library F==c---=-------- poos GEX core framework
| |
N Low level
OS USB stack Default pipe USB driver
| |
USB host phy USB cable USB device phy

Dashed lines: virtual connection

Figure 4.2: The logical structure of USB

transactions (both IN and OUT) are initiated by the host; functions have to wait for their
turn. Endpoint 0 is bidirectional, always enabled, and serves as a control endpoint. The
host uses the control endpoint to read information about the device and configure it as
needed.

B 4.1.2 Transfer Types

There are four types of data transfers defined in USB: control, bulk, isochronous, and
interrupt. Each endpoint is configured for a fixed transfer type:

e Control — initial configuration after device plug-in; also used for other application-
specific control messages that can affect other pipes.
e Bulk — used for burst transfers of large messages

e Isochronous — streaming with guaranteed low latency; designed for audio or video
streams where some data loss is preferred over stuttering

o Interrupt — low latency short messages, used for human interface devices like mice
and keyboards

B 4.1.3 Interfaces and Classes

The function’s endpoints are grouped into interfaces. An interface describes a logical
connection of endpoints, such as the reception and transmission endpoints that belong
together. An interface is assigned a class defining how it should be used.

Standard classes are defined by the USB specification [10] to provide a uniform way of
interfacing devices of the same type, such as human-interface devices (mice, keyboards,

18

4.1. Basic Principles and Terminology

gamepads) or mass storage devices. The use of standard classes makes it possible to re-use
the same driver software for devices from different manufacturers.

The class used for the GEX’s “virtual COM port” function was originally meant for
telephone modems, a common way of connecting to the Internet at the time the first
versions of USB were developed. A device using this class will show as /dev/ttyACMO on
Linux and as a COM port on Windows, provided the system supports it natively or the
right driver is installed.

B 4.1.4 Descriptors

USB devices are introspectable, that is, the host can learn about a newly connected device
automatically by probing it, without any user interaction. This is accomplished using a
descriptor table, a binary structure stored in the function and read by the host through the
control endpoint (default pipe) after the device is attached.

Each descriptor starts with a declaration of its length (in bytes), followed by its type,
allowing the host to skip unknown descriptors without having to discard the rest of the
table. The descriptors are logically nested and form a tree-like structure, but they are
stored sequentially in the descriptor table and the lengths do no include sub-descriptors.

The topmost descriptor holds information about the entire function, including the
vendor and product IDs which uniquely identifies the device model. It is followed by a
Configuration descriptor, grouping a set of interfaces. More than one configuration may be
present and available for the host to choose from; however, this is rarely used or needed.
Each configuration descriptor is followed by one or more interface descriptors, each with its
class-specific sub-descriptors and/or endpoint descriptors.

The descriptor table used by GEX is captured in Figure 4.3 for illustration. The vendor
and product IDs were obtained from the pid.codes repository [11] providing free product
codes to open source projects. The official way of obtaining the unique code involves high
recurring fees ($4000 per annum) to the USB Implementers Forum, Inc. and is therefore
not affordable for non-commercial use; alternatively, a product code may be obtained from
some MCU vendors if their product is used in the device.

19

4. Universal Serial Bus

Device Descriptor:

bLength 18
bDescriptorType 1
bcdUSB 2.00
bDeviceClass 239
bDeviceSubClass 2
bDeviceProtocol 1
bMaxPacketSize0 64
idVendor 0x1209
idProduct 0x4c60
bcdDevice 0.01
iManufacturer

iProduct
iSerial
bNumConfigurations 1
Configuration Descriptor:
bLength 9
bDescriptorType 2
wTotalLength 98
bNumInterfaces 3
bConfigurationValue 1
iConfiguration 0
bmAttributes 0x80
(Bus Powered)
MaxPower
Interface Descriptor:
bLength
bDescriptorType
bInterfaceNumber
bAlternateSetting
bNumEndpoints
bInterfaceClass
bInterfaceSubClass
bInterfaceProtocol
iInterface
Endpoint Descriptor:
bLength
bDescriptorType
bEndpointAddress
bmAttributes
Transfer Type
Synch Type
Usage Type
wMaxPacketSize
bInterval
Endpoint Descriptor:
bLength
bDescriptorType
bEndpointAddress
bmAttributes
Transfer Type
Synch Type
Usage Type
wMaxPacketSize
bInterval
Interface Association:
bLength
bDescriptorType
bFirstInterface
bInterfaceCount
bFunctionClass
bFunctionSubClass
bFunctionProtocol
iFunction

Miscellaneous Device
Interface Association
InterBiometrics

1 MightyPork

2 GEX
3 0029002F-42365711-32353530

500mA

Mass Storage
SCSI

o000 N OO B

80 Bulk-Only

0x81

0x0040

0x0040

e

4 Settings VFS

7
5
EP 1 IN

Bulk
None
Data
1x 64 bytes

EP 1 0UT

Bulk

None

Data

1x 64 bytes
0

Communications
Abstract (modem)
AT-commands (v.25ter)

8
1
1
2
2
2
1
5 Virtual Comport ACM

Interface Descriptor:

bLength
bDescriptorType
bInterfaceNumber
bAlternateSetting
bNumEndpoints
bInterfaceClass
bInterfaceSubClass
bInterfaceProtocol
iInterface
CDC Header:
bcdCDC 1.10
CDC Call Management:
bmCapabilities 0x00
bDatalnterface 2
CDC ACM:
bmCapabilities
sends break
line coding and serial
CDC Union:

GO, NNFE O B O

C
A
A
v

0x06

ommunications
bstract (modem)
T-commands (v.25ter)
irtual Comport ACM

state

bMasterInterface 1
bSlaveInterface 2
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x83 EP 3 IN
bmAttributes 3
Transfer Type Interrupt
Synch Type None
Usage Type Data
wMaxPacketSize 0x0008 1x 8 bytes
bInterval 255
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 2
bAlternateSetting 0
bNumEndpoints 2
bInterfaceClass 10 CDC Data
bInterfaceSubClass 0
bInterfaceProtocol 0
iInterface 6 Virtual Comport CDC
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x02 EP 2 0UT
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x82 EP 2 IN
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0x0040 1x 64 bytes
bInterval 0

Figure 4.3: USB descriptors of a GEX prototype obtained using “lsusb”

4.2. USB Physical Layer

B 4.2 USB Physical Layer

USB uses differential signaling with Non Return to Zero Inverted (NRZI) encoding and
bit stuffing (the insertion of dummy bits to prevent long intervals in the same DC level).
The encoding, together with frame formatting, checksum verification, retransmission, and
other low-level aspects of the USB connection are entirely handled by the USB physical
interface block in the microcontroller’s silicon. Normally we do not need to worry about
those details; nonetheless, a curious reader may find more information in chapters 7 and 8
of [6]. The electrical characteristics of the physical connection deserve more attention, as
they need to be understood correctly for a successful schematic and PCB design.

The USB cable contains 4 conductors: Vgys (+5V), D+, D—, and ground (GND). The
data lines, D+ and D—, are also commonly labeled DP and DM. This differential pair should
be routed in parallel on the PCB and kept at the same length.

USB versions that share the same connector are backward compatible. The desired bus
speed is requested by the device using a 1.5k pull-up resistor to 3.3V on one of the data
lines: D+ pulled high for Full Speed (shown in Figure 4.4), D— pulled high for Low Speed.
The polarity of the differential signals is also inverted depending on the used speed, as
the idle level changes. Some microcontrollers integrate the correct pull-up resistor inside
the USB peripheral block (including out STM32F072), removing the need for an external
resistor.

USB host USB device
+3.3V
shielded cable 1.5 kQ
=
transceiver » _ [z=90Q () i { transceiver
N wars
14.25-24.8 kQ

Figure 4.4: Pull-up and pull-down resistors near the host and a Full Speed function, as
prescribed by the USB specification rev. 2.0

When a function needs to be re-enumerated by the host, which causes a reload of the
descriptor table and the re-attachment of software drivers, it can momentarily remove the
pull-up resistor, which the host will interpret as if the device was disconnected. With an
internal pull-up, this can be done by flipping a bit in a control register. An external resistor
may be connected through a transistor controlled by a GPIO pin. As discussed in [12], a
GPIO pin might be used to drive the pull-up directly, though this has not been verified by
the author.

The Vpuys line supplies power to bus-powered devices. Self-powered devices can leave
this pin unconnected and instead use an external power supply. The maximal current
drawn from the Vgys line is configured using a descriptor and should not be exceeded, but
experiments suggest this is often not enforced.

21

4. Universal Serial Bus

More details about the electrical and physical connection may be found in [7], sections
Connectors through Power.

. 4.3 USB Classes

This section explains the classes used in the GEX firmware. A list of all standard classes
with a more detailed explanation can be found in [10].

B 4.3.1 Mass Storage Class

The Mass Storage Class (MSC) is supported by all modern PC operating systems to support
USB thumb drives, external disks, memory card readers, and other storage devices.

The MSC specification [13] defines multiple transport protocols that can be selected
using the descriptors. The Bulk Only Transport (BOT) [14] will be used for its simplicity.
BOT uses two bulk endpoints for reading and writing blocks of data and for the exchange
of control commands and status messages.

For the mass storage device to be recognized by the host operating system, it must also
implement a command set. Most mass storage devices use the SCSI Transparent command
set 1.

Unfortunately, the SCSI Transparent command set appears to have been deliberately
left unspecified for license or copyright reasons (see discussion in [15] and the surrounding
thread) and the protocol presently used under this name is an industry standard without a
clear definition. Some pointers may be found in [16] and by examining the source code of
the USB Device driver library provided by ST Microelectronics.

This command set lets the host read information about the attached storage device,
such as its capacity, and check for media presence and readiness to write or detach. This is
used, e.g., for the “Safely Remove” function, which ensures that all internal buffers have
been written to the flash memory.

In order to emulate a mass storage device without having a physical storage medium,
we need to generate and parse the file system on-the-fly as the host OS tries to access it.
This will be discussed in Chapter 6.

B 432 CDC/ACM Class

Historically meant for modem communication, Communication Devices Class / Abstract
Control Model (CDC/ACM) is now the de facto standard way of making USB devices
appear as serial ports on the host OS. Its specification can be found in [17]. CDC/ACM is
a combination of two related classes, CDC handling the data communication and ACM,

!To confirm this assertion, the descriptors of five thumb drives and an external hard disk were analyzed
using 1susb. All but one device used the SCSI command set, one (the oldest thumb drive) used SFF-8070:i.
A list of possible command sets can be found in [13]

22

4.3. USB Classes

which defines control commands. Three endpoints are used: bulk IN, bulk OUT, and
interrupt OUT.

The interrupt endpoint is used for control commands, such as toggling the auxiliary lines
of RS-232 or setting the baud rate. Since GEX does not translate the data communication
to any physical UART, those commands are not applicable and can be silently ignored.

An interesting property of the CDC class is that the bulk endpoints transport raw data
without any wrapping frames. By changing the interface’s class in the descriptor table to
255 (Vendor Specific Class), we can retain the messaging functionality of the designated
endpoints, while accessing the endpoints device directly using, e.g., libUSB, without any
interference from the OS. This approach is also used to hide the MSC interface when it is
not needed.

B 4.3.3 Interface Association: Composite Class

The original USB specification expected that each function will have only one interface
enabled at a time. After it became apparent that there is a need to have multiple unrelated
interfaces working in parallel, the Interface Association Descriptor (IAD) [18] was introduced
as a workaround.

The IAD is an entry in the descriptor table that defines which interfaces belong together
and should be handled by the same software driver. To use the IAD, the function’s class
must be set to OxEF, subclass 0x02, and protocol 0x01 in the top level descriptor, so that
the OS knows to look for this descriptor before binding drivers to any interfaces.

In GEX, the IAD is used to tie together the CDC and ACM interfaces while leaving out
the MSC interface which should be handled by a different driver. To make this work, a new
composite class was created as a wrapper for the library-provided MSC and CDC/ACM
implementation.

23

24

Chapter 5

FreeRTOS

FreeRTOS is a free, open-source real-time operating system kernel targeted at embedded
systems; it has been ported to many different microcontroller architectures [19] and it
is the de-facto industry standard. The system is compact and designed to be easy to
understand; it is written in C, with the exception of some architecture-specific routines
which use assembly. A complete overview of its application programming interface (API) is
available in the FreeRTOS reference manual [20] and its guide book [21].

FreeRTOS provides a task scheduler, forming the central part of the system, and
implements queues, semaphores, and mutexes for message passing and the synchronization
of concurrent tasks. Those features are summarily called synchronization objects, or simply
objects.

The system is used in GEX for its synchronization objects that allow us to safely pass
messages between interrupts and working threads, without deadlocks or race conditions;
the particular usage of FreeRTOS features will be explained in Section 10.7. The built-in
stack overflow protection helps us optimize task memory allocation!, and the heap allocator
provided by FreeRTOS enables thread-safe dynamic allocation with a shared heap.

B 5.1 Basic FreeRTOS Concepts and Functions

B 5.1.1 Tasks

Threads in FreeRTOS are called tasks. Each task is assigned a memory area to use as its
stack space, and a holding structure with its name, saved context, and other metadata used
by the kernel. A task context includes the program counter, stack pointer and other register
values. Task switching is done by saving and restoring this context by manipulating the
values on the stack before leaving an interrupt service routine (ISR). The FreeRTOS website
provides an example with the AVR port [22] demonstrating how its internal functionality is
implemented, including the context switch.

At start-up the firmware initializes the kernel, registers tasks to run, and starts the
scheduler. From this point onward the scheduler is in control and runs the tasks using
a round robin scheme, always giving a task one tick of run time (usually 1ms) before

!The stack monitor reports how much stack space was really used, so we can expand or shrink it as
needed to make the application work reliably, without wasting memory that would never be used.

25

5. FreeRTOS

interrupting it. Which task should run is determined primarily by their priority numbers,
but there are other factors, as will be shown in Section 5.1.1.

I Task Run States

Tasks can be in one of four states: Suspended, Ready, Blocked, and Running. The Suspended
state does not normally occur in a task’s life cycle, it is entered and left using API calls
from the application. A task is in the Ready state when it can run, but is currently paused
because a higher priority task is running. It enters the Running state when the scheduler
switches to it. A Running task can wait for a synchronization object (e.g., a mutex) to be
available; at this point it enters a Blocked state and the scheduler runs the next Ready
task. When no tasks can run, the Idle Task takes control; it can either enter a sleep state
to save power, or wait in a loop until another task is available. The Idle task is always
either Ready or Running and has the lowest priority of all tasks.

I Task Switching and Interrupts

Task switching occurs periodically in a timer interrupt, usually every 1ms; in Arm Cortex-
M chips this is typically the SysTick interrupt, a timer designed for this purpose that is
included in the core itself and thus available on all derived platforms.

After one tick of run time, the Running task is paused and becomes Ready, or continues
to run if no higher-priority task is available. If a higher-priority task waits for an object and
this is made available in an ISR, the running lower-priority task is paused and the waiting
task resumes immediately. FreeRTOS defines interrupt-friendly variants of some of the API
functions intended for this purpose; however, only a subset of the API is available in an
ISR, for example, it is not possible to use the delay function or wait for an object with a
timeout, as the SysTick interrupt, incrementing the tick counter, has the lowest priority
and could not run. This is by design, intended to prevent unexpected context switching in
application interrupts.

FreeRTOS uses a priority inheritance mechanism to prevent situations where a high-
priority task waits for an object held by a lower-priority task (called priority inversion).
The blocking task’s priority is temporarily raised to the level of the blocked high-priority
task so it can finish earlier and release the held object. Its priority is then degraded back
to the original value. When the lower-priority task itself is blocked, the same process can
be repeated.

Bl 5.1.2 Synchronization Objects

FreeRTOS provides binary and counting semaphores, mutexes, and queues, which will now
be briefly explained; a more in-depth description can be found in the guide book [21].

¢ Binary semaphores are used for task notifications, e.g., when a task waits for a
semaphore to be set by an ISR. This makes the task Ready and if it has a higher
priority than the task previously running, it is immediately resumed to process the
event.

26

5.2. Stack Overflow Protection

¢« Counting semaphores represent available resources in a resource pool, a set of
software or hardware resources used by tasks. The pool is accompanied by a counting
semaphore on which tasks wait for a resource to become available, and then subtract
the semaphore value. After a resource is no longer needed by the task, the semaphore
is incremented again and another task can use it.

e Mutexes (locks) are similar to semaphores, but they must be taken and released in
the same task. We use them to guard an exclusive access to a resource, typically a
hardware peripheral or a shared memory area. When a mutex is taken, any other
tasks trying to take it too enter become Blocked. A Blocked task waiting for a mutex
is resumed once this becomes available, at which point the task becomes its owner
and is resumed.

¢ Queues are used for passing messages between tasks, or from interrupts to tasks.
Both sending and receiving of queue messages can block the task until the operation
becomes possible. A queue handing task is often simply a loop which tries to read
from the queue with an infinite timeout and processes the received data once the
reading succeeds.

It must be noted that synchronization objects like mutexes and semaphores can help
combat concurrent access only when used consistently and correctly. A locked mutex cannot
guard against a rogue task accessing the protected resource without checking.

. 5.2 Stack Overflow Protection

Each task in FreeRTOS is assigned a block of RAM to use as its stack when it runs. This is
where the stack pointer is restored to in the context switch. The stack pointer could move
outside the designated area if the allocated space is insufficient; without countermeasures,
this would mean that we are overwriting bytes in some unrelated memory structure, perhaps
another task’s stack memory.

A stack overflow protection can be enabled by a flag in the FreeRTOS configuration
file. This function works in two ways: the more obvious is a simple check that the stack
pointer remains in the designated area; however, as the check may be performed only
in the scheduler interrupt, it is possible that the stack pointer exceeds the bounds only
temporarily and returns back before the check can run. A more advanced solution, used by
FreeRTOS, fills the stack memory with a known filler value before starting the task; the last
few bytes are then tested to match this value. Not only can we detect a stack overflow more
reliably, this feature also makes it possible to estimate the peak stack usage by counting
the remaining filler bytes. We cannot distinguish between the original values and the same
data stored on the stack by the program, but the possibility of this happening is sufficiently
low and this method proves remarkably successful at detecting misconfigured stack sizes.

27

28

Chapter 6

The FAT16 File System and Its Emulation

A file system (FS) is used by GEX to provide the user comfortable access to the configuration
files. By emulating a mass storage USB device, the module appears as a thumb drive on
the host PC, and the user can edit its configuration using their preferred text editor. The
FAT16 file system was selected for its simplicity and good cross-platform support [23].

Three variants of the File Allocation Table (FAT) file system exist: FAT12, FAT16, and
FAT32. FAT12 was used on floppy disks and is similar to FAT16, except for additional
size constraints and a FAT entry packing scheme. FAT16 and FAT32 are FAT12’s later
developments from the time when hard disks became more common and the old addressing
scheme could not support their larger capacity.

This chapter will explain the structure of FAT16 and the challenges faced when trying
to emulate it without a physical storage medium. A more detailed overview of the file
system can be found in literature [24, 25, 26, 27, 28] consulted during the GEX firmware
development, with the Microsoft white paper [28] giving the most complete description.

B 6.1 The General Structure of the FAT File System

The storage medium is organized into sectors (or blocks), usually 512 bytes long; that is
the smallest addressing unit used by the file system. The disk starts with a boot sector,
also called the Master Boot Record (MBR), followed by optional reserved sectors, one or
two copies of the file allocation table, and the root directory. All disk areas are aligned to a
sector boundary:

Table 6.1: Areas of a FAT-formatted disk

Disk area Size / Notes

Boot sector 1 sector

Reserved sectors optional

FAT 1 1 or more sectors, depends on disk size
FAT 2 optional, a back-up copy of FAT 1
Root directory 1 or more sectors

Data area Organized in clusters

29

6. The FAT16 File System and Its Emulation

Il 6.1.1 Boot Sector

This is a 1-sector structure which holds the OS bootstrap code for bootable disks. The
first 3 bytes are a jump instruction to the actual bootstrap code located later in the sector.
What matters to us when implementing the file system is that the boot sector also contains
data fields describing how the disk is organized, what file system is used, who formatted it,
etc. The size of the FAT and the root directory is defined here. The exact structure of the
boot sector can be found in either of [24, 25, 26, 27, 28] or in the attached GEX source
code.

I 6.1.2 File Allocation Table

The data area of the disk is organized in clusters, logical allocation units composed of
groups of sectors. The use of a larger allocation unit allows the system to use shorter
addresses and thus support a larger disk capacity.

The FAT acts as a look-up table combined with linked lists. In FAT16, it is organized in
16-bit fields, each corresponding to one cluster. The first two entries in the allocation table

are reserved and hold special values set by the disk formatter and the host OS: a “media
descriptor” OxFFF8 and a “clean/dirty flag” OxFFFF /0x3FFF.

Files can span multiple clusters; each FAT entry either holds the address of the following
file cluster, or a special value:

e 0x0000 — free cluster
o OxFFFF — last cluster of the file (still including file data)
e O0xFFF7 — bad cluster

The bad cluster mark, OxFFF7, is used for clusters which are known to corrupt data
due to a flaw in the storage medium.

Bl 6.1.3 Root Directory

A directory is a record on the disk that can span several clusters and holds information
about the files and sub-directories contained in it. The root directory has the same structure
as any other directory; the difference lies in the fact that it is allocated with a fixed position
and size when the disk is formatted, whereas other directories are stored in the same way as
ordinary files and their capacity can be increased by simply expanding to another cluster.

Directories are organized in 32-byte entries representing individual files. Table 6.2 shows
the structure of one such entry. The name and extension fields form the well-known “8.3”
file name format known from MS DOS!. Longer file names are encoded using the Long File
Name (LFN) scheme [29] as special hidden entries stored in the directory table alongside
the regular “8.3” ones kept for backward compatibility.

The first byte of the file name has special meaning:

¢ 0x00 — indicates that there are no more files when searching the directory

1«8 37 refers to the byte size of the name and extension fields in the directory entry.

30

6.1. The General Structure of the FAT File System

Table 6.2: Structure of a FAT16 directory entry

Offset Size (bytes) Description

0 8 File name (padded with spaces)
8 3 File extension

11 1 File attributes

12 10 Reserved

22 2 Creation time

24 2 Creation date

26 2 Address of the first cluster

28 4 File size (bytes)

e OxEb5 — marks a free slot; this is used when a file is deleted

e 0x05 — indicates that the first byte should actually be 0xE5, a code used in some
character sets at the time, and the slot is not free?.

e Any other values, except 0x20 (space) and characters forbidden in a DOS file name,
starts a valid file entry. Generally, only space, A-Z, 0-9, -, and _ should be used in
file names for maximum compatibility.

The attributes field contains flags such as directory, volume label, read-only and hidden.
Volume label is a special entry in the root directory defining the disk’s label shown by the
host OS. A file with the directory bit set is actually a pointer to a subdirectory, meaning
that when we open the linked cluster, we will find another directory table.

Figure 6.1 shows a possible organization of the GEX file system with two INT files, one
spanning two clusters, the other being entirely inside one. The clusters need not be used
completely; the exact sizes are stored in the files’ directory entries.

Root directory FAT Data area
UNITS.INI OxFFF8 . Cluster 2
cluster 2 e UNITS.INI part 1
OXFFFF|
SYSTEM.INI /' __|Cluster 3
cluster 4 3 I ll' UNITS.INI part 2
C OXFFFFF-~ _..|Cluster 4
) SYSTEM.INI
OXFFFF[-~

Figure 6.1: An example of the GEX virtual file system

2The special meaning of 0xE5 appears to be a correction of a less than ideal design choice earlier in the
development of the file system

31

6. The FAT16 File System and Its Emulation

B 6.2 FAT16 Emulation

The FAT16 file system is relatively straightforward to implement. However, it is not practical
or even possible to keep the entire file system in memory on a small microcontroller like
our STM32F072. This means that we have to generate and parse disk sectors and clusters
on-demand, when the host reads or writes them. The STM32 USB Device library helpfully
implements the MSC and provides API endpoints to which we connect our file system
emulator. Specifically, those are requests to read and write a sector, and to the read disk’s
status and its parameters, such as the capacity.

B 6.2.1 DAPLink Emulator

A FAT16 emulator was developed as part of the open-source Arm Mbed DAPLink project [30].
It is used there for a drag-and-drop flashing of firmware images to the target microcontroller,
taking advantage of the inherent cross-platform support (it uses the same software driver
as any thumb drive, as discussed in Section 4.3.1). Arm Mbed also uses a browser-based
integrated development environment (IDE) and cloud build servers, thus the end user does
not need to install or set up any software to program a compatible development kit.

The GEX firmware adapts several parts of the DAPLink code, optimizing its RAM
usage and porting it to work with FreeRTOS. The emulator source code is located in the
User/vfs folder of the GEX repository; the original Apache 2.0 open-source software license
headers, as well as the file names, have been retained.

As shown in Table 6.1, the disk consists of several areas. The boot sector is immutable
and can be loaded from the flash memory when requested. The handling of the other disk
areas (FAT, data area) depends on the type of access: read or write.

Bl 6.2.2 Read Access

The user can only read files that already exist on the disk; in our case, UNITS.INI and
SYSTEM. INI. Those files are dynamically generated from the binary settings storage and,
conversely, parsed as a byte stream without ever existing in their full form. This fact makes
our task more challenging, as the file size cannot be easily measured and there is no obvious
way to read a sector from the middle of a longer file. We solve this by implementing two
additional functions in the INI file generation routine: a read window and a dummy read
mode.

A read window is a specification of the byte range we wish to generate. The INI generator
discards bytes before the start of the read window, writes those inside the window to a
holding buffer, and stops the end of the window is reached. This lets us extract a sector
from anywhere in a file. The second function, dummy read, is tied to the window function:
we set the start index so high that it is never reached (e.g., OxXFFFFFFFF), and have the
generator count discarded characters. This character counter holds the full file size once
the generation is completed.

One more problem needs to be addressed: we need to know the mapping between the
files and the clusters they are stored in. In our case, the files change only when the settings

32

6.2. FAT16 Emulation

are modified. After each such change, an algorithm is run which measures the file sizes,
allocates their clusters, and preserves this information for later use. When the host tries to
read from the data area of the disk, we simply test if the requested sectors are occupied by
any file, and if so, serve the corresponding part of it using the read window function. The
FAT can be dynamically generated from this information as well.

B 6.2.3 Write Access

Write access to the disk is more challenging to emulate than reading, as the host OS tends
to be somewhat unpredictable. In GEX’s case we are interested only in the action of
overwriting an already existing file, but it is interesting to analyze other actions the host
may perform as well.

It must be noted that due to the nonexistence of a physical storage medium, it is not
possible to read back a file the host has previously written, unless we store or re-generate
its content when such a read attempt occurs. The OS may show the written file on the disk,
but when the user tried to open it, the action either fails, or shows a cached copy. The
emulator works around this problem by temporarily reporting that the storage medium has
been removed after a file is written, forcing the host to drop any cached data and reload
the disk.

Il File Deletion

A file is deleted by:

1. Marking all FAT sectors used by the file as free

2. Replacing the first character of its name in the directory table by 0xE5 to indicate
the slot is free

From the perspective of emulation, we can ignore the FAT access and only detect writes
to the directory sectors. This is slightly more complicated when one considers that all
disk access is performed in sectors: the emulator must compare the written data with the
original bytes to detect what change has been performed. Alternatively, we could parse the
entire written sector as a directory table and compare it with our knowledge of its original
contents.

B 6.2.4 File Name Change

A file is renamed by modifying its directory entry. In the simple case of a short, 8.3 file name,
this is an in-place modification of the file entry. Long file names, using the LEN extension,
are a complication, as the number of non-file entries holding the long file name might
change, and subsequently the following entries in the table may shift or be re-arranged.

33

6. The FAT16 File System and Its Emulation

B 6.2.5 File Creation

A new file is created in three steps:

1. Finding free clusters and chaining them by writing the following cluster addresses (or
0xFFFF for the last cluster) into the FAT

2. Finding and overwriting a free entry in the directory table

3. Writing the file content

We can expect that the host first finds available sectors and a free directory entry before
performing any write operations, to prevent potential disk corruption.

To properly handle a newly created file by the emulator, we could, in theory, find its
name from the directory table, which has been updated, and then collect the data written
to the corresponding clusters. In practice, confirmed by experiments with a real Linux host,
the two latter steps may happen in any order, and often the content is written before the
directory table is updated.

The uncertain order of the written areas poses a problem when the file name has any
significance, as we cannot store the received file data while waiting for the directory table
to be updated. The Arm DAPLink firmware solves this by analyzing the content of the
first written sector of the file, which may contain the binary Nested Vectored Interrupt
Controller (NVIC) table, or a character pattern typical for Intel hex files, allowing it to
recognize a binary image the user wants to flash to the target MCU.

B 6.2.6 File Content Change

A change to file’s content is performed in a similar way to the creation of a new file, except
instead of creating a new entry in the directory table, an existing one is updated with the
new file size. The name of the file may be unknown until the content is written, but we
could detect the file name by comparing the start sector with those of all files known to the
virtual file system.

In the case of GEX, the detection of a file name is not important; we expect only INI
files to be written, and the particular file may be detected by its first section marker, such
as [UNITS] or [SYSTEM]. Should a non-INI file be written by accident, the INI parser will
likely detect a syntax error and discard it.

It should be noted that a file could be updated only partially, skipping the clusters which
remain unchanged, and there is also no guarantee regarding the order in which the file’s
sectors are written. A non-linear or partial file update is hard to process for the emulator,
but it can be reliably detected and discarded. Fortunately, this host behavior has not been
conclusively observed in practice, but a file update rarely fails for unknown reasons; this
could be a possible cause.

34

Chapter 7

Supported Hardware Buses

Hardware buses implemented in GEX are presented in this chapter. The description of
each bus is accompanied by several examples of devices that can be interfaced with it. The
reader is advised to consult the official specifications and particular devices’ datasheets for
additional details.

B 7.1 UART and USART

The Universal Synchronous/Asynchronous Receiver/Transmitter (USART) has a long
history and is still in widespread use today. It is the protocol used in RS-232, which was
once a common way of connecting modems, printers, mice and other devices to personal
computers. RS-232 can be considered the ancestor of USB in its widespread availability
and use. UART framing is also used in the industrial bus RS-485 and the automotive
interconnect bus LIN.

LSB MSB
Start ; ; ; ; ; ; ; ; Parity | Sto|
bit Bit0O | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 | Bit7 bity bitp L Next frame....
M j =
Idle frame
Stop , Stop
Break frame (used in LIN) bit bit

Figure 7.1: USART frame format in the 8-bit configuration with parity

UART and USART are two variants of the same interface. USART includes a separate
clock signal, while the UART timing relies on a well-known clock speed and the bit clock
is synchronized by start bits. USART was historically used in modems to achieve higher
bandwidth, but is now mostly obsolete.

USART, as implemented by microcontrollers such as the STM32 family, is a two-wire
full duplex interface that uses 3.3V or 5V logic levels. The data lines are in the high logical

35

7. Supported Hardware Buses

level when idle. A USART frame, shown in Figure 7.1, starts by a start-bit (low level for
the period of one bit) followed by n data bits (typically eight), an optional parity bit, and
a period of high level called a stop bit (or stop bits), dividing consecutive frames.

RS-232 uses the UART framing, but its levels are different: logical 1 is represented by
negative voltages —3 to —25V and logical 0 uses the same range, but positive. To convert
between RS-232 levels and Transistor-Transistor Logic (TTL) (5V) levels, a level-shifting
circuit such as the MAX232 can be used. In RS-232, the two data lines (Rx and Tx)
are accompanied by Ready To Send (RTS), Clear To Send (CTS), and Data Terminal
Ready (DTR), which facilitate handshaking and hardware flow control. In practice, those
additional signals are often unused or their function differs from their historical meaning;
for instance, Arduino boards (using a USB-serial converter) use the DTR line as a reset
signal to automatically enter their bootloader for firmware flashing [31].

B 7.1.1 Examples of Devices Using UART

e MH-Z19B — nondispersive infrared (NDIR) CO; concentration sensor
o« NEO-MS8 — uBlox Global Positioning System (GPS) module
« ESP8266 with AT firmware — a WiFi module

e MFRC522 — Near-Field Communication (NFC) MIFARE reader/writer 1C (also
supports other interfaces)

B 72 spi

Serial Peripheral Interconnect (SPI) is a point-to-point or multi-drop master-slave interface
based on shift registers. The SPI connection with multiple slave devices is depicted in
Figure 7.3. It uses at least 4 wires: Serial Clock (SCK), Master Out, Slave In (MOSI),
Master In, Slave Out (MISO) and Slave Select (SS). SS is often marked Chip Select with
Bar (CSB) or Negated Slave Select (NSS) to indicate that its active state is 0. Slave devices
are addressed using their SS input while the data connections are shared. A slave that is
not addressed releases the MISO line to a high impedance state so it does not interfere in
ongoing communication.

Transmission and reception on the SPI bus happen simultaneously. A bus master asserts
the SS pin of a slave it wishes to address and then sends data on the MOSI line while
receiving a response on MISO. The slave normally responds with 0x00 or a status register
as the first byte of the response, before it can process the received command. A timing
diagram is shown in Figure 7.2, including two configurable parameters: Clock Polarity
(CPOL) and Clock Phase (CPHA).

SPI devices often provide a number of control, configuration and status registers that
can be read and written by the bus master. The first byte of a command usually contains
one bit that determines if it is a read or write access, and an address field selecting the
target register. The slave then either stores the following MOSI byte(s) into the register, or
sends its content back on MISO (or both simultaneously).

36

7.2. SPI

SCK

CPOL=1

CPOL=0

MISO or MOSI

CPHA=1

S

NSS

A /-

Figure 7.2: SPI timing diagram explaining the CPOL and CPHA settings (shown on 3 data
bits; a real message will use at least 8 bits)

Master | Slaves
—MISO—{~_ '
—MOSI— T~ ™~
O —sck— 1~

-
f

| Slave Select

f

Figure 7.3: A SPI bus with 1 master and 3 slaves, each enabled by its own Slave Select signal

B 7.2.1 Examples of Devices Using SPI

e SX1276 — LoRa transceiver

« NnRF24L.01+ — 2.4 GHz ISM band radio module
¢ L3GD20 - 3-axis gyroscope

o BMP280 — pressure sensor

¢ BMEG68O0 — air quality sensor

« ENC28J60 — Ethernet controller

e L6470 — intelligent stepper motor driver

o AD9833 — waveform generator (MOSI only)

e ADET7912 — triple 3-A ADC for power metering applications
o SD cards [32]

¢ SPl-interfaced EEPROM and Flash memories

37

7. Supported Hardware Buses
B 73 1’c

Inter-Integrated Circuit (I2C) is a two-wire, open-drain bus that supports multi-master
operation. It uses two connections (plus GND): Serial Data Line (SDA) and Serial Clock
Line (SCL), both open-drain with a pull-up resistor.

The protocol was developed by Philips Semiconductor (now NXP Semiconductors), and
its implementors were, until 2006, required to pay licensing fees, leading to the development
of compatible implementations with different names, such as Atmel’s Two-Wire Interface
(TWI) or Dallas Semiconductor’s “Serial 2-wire Interface” (e.g., used in the DS1307 Real-
Time Clock (RTC) chip). I?C is a basis of the System Management Bus (SMBus) and
Power Management Bus (PMBus), which add additional constraints and rules for a more
robust operation.

The frame format is shown and explained in Figure 7.4; more details may be found in
the specification [33] or application notes and datasheets offered by chip vendors, such as
the white paper from Texas Instruments [34]. A frame starts with a start condition and
stops with a stop condition, defined by an SDA edge while the SCL is high. The address
and data bytes are acknowledged by the slave by sending a 0 on the open-drain SDA line
in the following clock cycle. A slave can terminate the transaction by sending 1 in place of
the acknowledge bit. Slow slave devices may stop the master from sending more data by
holding the SCL line low at the end of a byte, a feature called Clock Stretching. As the bus
is open-drain, the line cannot go high until all participants release it.

Two addressing modes are defined: 7-bit and 10-bit. Due to the small address space,
exacerbated by many devices implementing only the 7-bit addressing, collisions between
different chips on a shared bus are common; many devices thus offer several pins to let the
board designer choose a few bits of the address by connecting them to different logic levels.

The bus supports multi-master operation, which leads to the problem of collisions.
Multi-master capable devices must implement a bus arbitration scheme as specified by
the IC standard [33]. This feature is, however, rarely used in practice; the most common
topology for I?C is multi-drop single-master, similar to SPI, with the advantage of using
only two microcontroller pins.

1S 1 P

| Il I | I I I |
START ADDRESS RW ACK DATA ACK DATA ACK STOP
condition condition

mbc604

Figure 7.4: An I°C message diagram (taken from the I?C specification [33])

38

7.4. 1-Wire

B 7.3.1 Examples of Devices Using 1°C

¢ APDS-9960 — ambient light, proximity and gesture sensor
« L3GD20, BMP280, BMEG80 — listed as SPI devices, those also support I°C

o DS1307 - RTC; I?C is not mentioned in the entire datasheet, presumably to avoid
paying license fees, but it is fully compatible

o IS31FL3730 — a light emitting diode (LED) matrix driver

o The Serial Camera Control Bus (SCCB) used to configure camera modules is derived
from 12C

B 7.4 1-Wwire

The 1-Wire bus, developed by Dallas Semiconductor (acquired by Maxim Integrated), uses
a single, bi-directional data line (Figure 7.5), which can also power the slave devices in a
parasitic mode, reducing the number of required wires to just two (compare with 3 in I2C
and 5 in SPI, all including GND). The parasitic operation is possible thanks to the data
line resting at a high logic level most of the time, charging an internal capacitor.

1-Wire uses an open-drain connection for the data line, similar to I?C, though the
protocol demands it to be connected directly to V4d in some places when the parasitic
mode is used; this is accomplished using an external transistor, or by reconfiguring the
GPIO pin as output and setting it to 1, provided the microcontroller is able to supply a
sufficient current.

The communication consists of short pulses sent by the master and (for bit reading)
the line continuing to be held low by the slave for a defined amount of time. The pulse
timing determines whether it is a read or write operation and which value is encoded. It
can be implemented either in software as delay loops, or by abusing a UART peripheral,
as explained in [35]. Detailed timing diagrams can be found in the DS18x20 [36]. 1-Wire
transactions include a checksum byte to ensure an error-free communication.

+3.3V
="
4.7 kQ : . .
1 Optional supply line
----- @ -------@-------@------,
MCU > > *— :
Data T T T]
Device Device Device Device
1 1 1]
—

Figure 7.5: 1-Wire connection topology with four slave devices

Devices are addressed by their unique 64-bit ID numbers called ROM codes or ROMs;
they can be found by the bus master, with a cooperation from slaves, using a ROM Search
algorithm. The search algorithm is explained in [37], including a possible implementation
example. If only one device is connected, a wild card command Skip ROM can be used to
address the device without a known ROM code.

39

7. Supported Hardware Buses

B 7.4.1 Examples of Devices Using 1-Wire

« DS1820, DS18S20, DS18B20 — digital thermometers

o iButton — contact-read access tokens, temperature loggers, etc.

Since 1-Wire is a proprietary protocol, there is a much smaller choice of available devices
and they also tend to be more expensive. The DS18x20 thermometers are, however, popular
enough to warrant the bus’s inclusion in GEX.

B 7.5 NeoPixel

NeoPixel is a marketing name of the WS2812 and compatible intelligent LED drivers
that are commonly used in “addressable LED strips” (Figure 7.6). These chips include the
control logic, PWM drivers and the LED diodes all in one 5x5mm SMD package.

The NeoPixel protocol is unidirectional, using only one data pin. The LED drivers are
chained together. Ones and zeros are encoded by pulses of a defined length on the data
pin; after the color data was loaded into the LED string, a longer “reset” pulse (low level)
is issued by the bus master and the set colors are displayed. The timing constraints are
listed in Table 7.1.

The NeoPixel timing is sensitive to pulse length accuracy; a deviation from the specified
timing may cause the data to be misinterpreted by the drivers. Some ways to implement the
timing use hardware timers or the Inter-IC Sound (I?S) peripheral. An easier method that
does not require any additional hardware resources beyond the GPIO pin is to implement
the timing using delay loops in the firmware; care must be taken to disable interrupts in
the sensitive parts of the timing; it may be advantageous to implement it in assembly for a
tighter control.

Table 7.1: NeoPixel pulse timing

Bit value Constraint Duration
0 High level 0.4 ps = 150ns
0 Low level 0.85 us £ 150ns
1 High level 0.45 ps + 150ns
1 Low level 0.8 us £ 150ns

- Reset pulse (low) > 50 us

40

7.5. NeoPixel

Figure 7.6: GEX prototype driving a strip of 5 NeoPixels

41

42

Chapter 8

Non-communication Hardware Functions

In addition to communication buses, described in Chapter 7, GEX implements several
measurement and output functions that take advantage of the microcontroller’s peripheral
blocks, such as timers/counters and DAC. The more complicated ones are described here;
simpler functions, such as the raw GPIO access, will be described later together with their
control API.

B 81 Frequency Measurement

Applications like motor speed measurement or the use of sensors with PWM output demand
a tool capable of measuring frequency (and the duty cycle) of a signal. This can be done
using laboratory instruments such as the Agilent 53131A. A low-cost solution can be realized
using a timer/counter microcontroller peripheral.

Two basic methods to measure frequency exist [38], each with its advantages and drawbacks:

e The direct method (Figure 8.1) is based on the definition of frequency as a number of
cycles n in a fixed-length time window 7 (usually 1s); the frequency is then calculated
as f=n/T.

One timer generates the time window and its output gates the input of another,

configured as a pulse counter. At the end of the measurement window an interrupt is
generated and we can read the pulse count from the counter’s register.

The direct method has a resolution of 1 Hz with a sampling window of 1s (only a
whole number of pulses can me counted). The resolution can be increased by using a
longer time window, provided the measured signal is stable enough to make averaging
possible without distorting the result. Further increase of precision is possible through
analog or digital interpolation [39], a method used in some professional equipment.

o The indirect or reciprocal method (Figure 8.2) measures one period T as the time
interval between two pulses and this is then converted to frequency as f = 1/T.

This method needs only one timer/counter. Cycles of the system clock are counted
for the duration of one period on the input pin (between two rising edges). If we
additionally detect the falling edge in between, the counter’s value gives us the duty
cycle when related to the overall period length.

The reciprocal method’s resolution depends on the counter’s clock speed; if driven
at 48 MHz, the tick period is 20.83ns, which defines the granularity of our time

43

8. Non-communication Hardware Functions

measurement. It is common to measure several pulses and average the obtained values
to further increase the precision.

We can easily achieve a sub-hertz resolution with this method, but its performance de-
grades at high frequencies where the time measurement precision becomes insufficient.
The input frequency range can be extended using a hardware prescaler!, which is also
applicable to the direct method, should the measurement of frequencies outside the
counter’s supported range be required. A duty cycle measurement available in this
method can be used to read the output of sensors that use a pulse-width modulation.

_Reference timeout—» ISR
interval timer

j [}

read'd'ata

Input pin v .
Pulse counter -~

Figure 8.1: Direct frequency measurement method

Input pin
D—pulse end ISR
L T
gate ;
read data

nr v -
System clock Pulse counter f---""

Figure 8.2: Reciprocal frequency measurement method

Which method to use depends on the frequency we want to measure; the worst-case
measurement errors of both methods, assuming an ideal 48 MHz system clock, are plotted
in Figure 8.3. It can be seen that the reciprocal method leads in performance up to 7kHz
where the direct method overtakes it. If a higher error is acceptable, the reciprocal method
could be used also for higher frequencies to avoid a reconfiguration and to take advantage
of its higher speed.

A good approach to a universal measurement, for cases where we do not know the
expected frequency beforehand, could be to obtain an estimate using the direct method
first, and if the frequency is below the worst-case error crossing point (here 7kHz, according
to Figure 8.3), to take a more precise measurement using the reciprocal method.

The system clock’s frequency, which we use to measure pulse lengths and to gate the
pulse counter, will be affected by tolerances of the used components, the layout of the PCB,
temperature effects etc., causing measurement errors. A higher accuracy could be achieved
using a temperature-compensated oscillator (TCO), or, in the direct method, with the
synchronization pulse provided by a GPS receiver to time the measurement interval.

! Prescaler is a divider implemented as part of the timer/counter peripheral block that can be optionally
enabled and configured to a desired division factor.

44

8.2. Analog Signal Acquisition

Worst-case measurmeent error [%]

— Direct method

Reciprocal method

10-6 ool ool ool ool ool ool ool [N
100 10" 102 108 104 10° 108 107 108
Input frequency [Hz]

Figure 8.3: Worst-case error using the two frequency measurement methods with an ideal
48 MHz timer clock. The crossing lies at 7kHz with an error of 0.015 %, or 1.05 Hz.

B 82 Analog Signal Acquisition

A very common need in experiments involving the measurement of physical properties is
the acquisition of analog signals, respective voltages. These can be roughly divided into DC
and AC or time-changing signals. Analog signals are converted to digital values using ADCs.
Several principles of analog signal measurement exist with different cost, speed, resolution,
and many other factors which determine their suitability for a particular application.

DC signals can be measured by taking several samples and calculating their average
value; in the presence of mains interference (50 Hz or 60 Hz), it is advisable to spread those
samples over the 20ms (resp. 16.7ms) time of one period, so that the interfering waveform
cancels out. Time-changing signals can be captured by taking isochronous samples at a
frequency conforming to the Nyquist theorem, that is, at least twice that of the measured
signal. In practice, a frequency several times higher is preferred for a more accurate capture.

The ADC type commonly available in microcontrollers, including our STM32F072, uses a
successive approximation method. It is called the SAR type ADC, after its main component,
the successive approximation register (SAR). A diagram of this ADC is shown in Figure 8.4.

The SAR type converter uses a DAC, controlled by the value in the SAR, which
approximates the input voltage, bit by bit, following the algorithm described in [40] and
outlined below:

45

8. Non-communication Hardware Functions

Clock Conversion complete

SAR
MSB - LSB Bit value

I TTTTT
Bits of the output word

A2122222211]

DAC

Sample & Hold
T

Figure 8.4: A diagram of the SAR type ADC

P 1 f

1. The SAR is cleared to all zeros.
2. The DAC generates an approximation voltage.

3. Its output is compared with the sampled input, and the comparator’s output is stored
as the active bit in the approximation register.

4. The approximation continues with step 2 and the following (less significant) bit.

5. After finding all bits of the data word, an interrupt request (IRQ) is generated and
the application program can read the result from the SAR.

A change of the input value would make this principle unreliable, which is why the input
is buffered by a sample & hold circuit. The holding capacitor is charged to the input voltage
and maintains this level during the conversion. The duration for which the capacitor is
connected to the input is called a sampling time.

B 8.3 Waveform Generation

A waveform generator is a useful tool in many experiments and measurements. A sine
stimulus is the basis of a lock-in amplifier; it can be used to measure impedance; with a
frequency sweep, we can obtain the frequency response of an analog filter, etc. We can, of
course, generate other waveforms, such as a triangle, ramp, or rectangle wave.

The DAC peripheral can produce a DC level on the output pin based on a control word.
When we periodically change its digital input, it produces an analog waveform.

B 8.3.1 Waveform Generation with DMA and a Timer

A straightforward, intuitive implementation of the waveform generator is illustrated in
Figure 8.5. This approach has its advantages: it is simple and works autonomously, with

46

8.3. Waveform Generation

no interrupt handling or interventions from the program. It could be implemented without
the use of Direct Memory Access (DMA) as well, using a loop periodically updating the
DAC values; of course, such approach is less flexible and we would run into problems with
interrupt handling affecting the timing accuracy.

request
Output pin
waveform DMA putp
look-up - ; DAC
circular

table

4

trigger

Timer

Figure 8.5: A simple implementation of the waveform generator, using DMA and a look-up table

The highest achievable output frequency largely depends on the size of our look-up table.
For instance, assuming a timer frequency of 48 MHz and a 8192-word table, holding one
period of the waveform, the maximum frequency would be short of 6 kHz, whereas if we
shorten the table to just 1024 words, we can get almost 47 kHz on the analog output. The
downside of a shorter table is a lower resolution, which will appear as DC plateaus or steps
when observed with an oscilloscope, producing harmonic components similar to those of a
square wave.

A major disadvantage of this simple generation method is given by the limitations of the
used timer, which defines the output frequency. Its output trigger fires when the internal
counter reaches a predefined value, after which the counting register is reset. The counting
speed is derived from the system clock frequency f. using a prescaler P and the set maximum
value N. Only output frequencies that can be exactly expressed as f = f./(P-N -TableSize)
can be accurately produced. Still, this simple and efficient method may be used where fine
tuning is not required to take advantage of its fully asynchronous operation.

B 8.3.2 Direct Digital Synthesis

There are situations where the simple waveform generation method is not sufficient, partic-
ularly when fine tuning, or on-line frequency and phase changes are required. Those are
the strengths of Direct Digital Synthesis (DDS), an advanced digital waveform generation
method well explained in [41].

A diagram of a possible DDS implementation in the STM32 firmware is shown in
Figure 8.6. It is based on a numerically controlled oscillator (NCO). The NCO consists
of a phase accumulator register and a tuning word which is periodically added to it at a
constant rate in a timer interrupt handler. The value of the tuning word determines the
output waveform frequency. The look-up table must have a power-of-two length so that it
can be addressed by the n most significant bits of the phase accumulator. An additional
control word could be added to this address to implement a phase offset for applications
like a phase-shift modulation.

47

8. Non-communication Hardware Functions

waveform Output pin
look-up DAC
table

addressing

Tuning word

n highest bits

trigger Phase accumulator

32 bits

Figure 8.6: A block diagram of a DDS-based waveform generator

M'fc

The output frequency is calculated as fouz = , where M is the tuning word, n

is the bit length of the phase accumulator, and f. is the frequency of the phase-updating
interrupt. The number of bits used to address the look-up table does not affect the output
frequency; the table can be as large as the storage space allows. A tuning word value
exceeding the lower part of the phase accumulator (including bits which directly enter the
look-up address) will cause some values from the table to be skipped. A smaller tuning
word, conversely, makes some values appear at the output more than once. This can be
observed as steps or flat areas on the output. When the tuning word does not evenly divide
2" that is, the modulo is non-zero, we can also observe jitter.

I DDS Implemented in Hardware

DDS may be implemented in hardware, including the look-up table, often together with the
DAC itself, which is then called a Complete DDS. That is the case of, e.g., the AD9833 from
Analog Devices. As the software implementation depends on a periodic interrupt, it is often
advantageous to use a component like this when we need higher output frequencies where
the use of an interrupt is not possible. GEX can control an external waveform generator
like the AD9833 using an SPI port.

B 84 Touch Sensing

The STM32F072 microcontroller includes a Touch Sensing Controller (TSC) peripheral
block. This device is meant to be used in touch-based user interfaces, e.g., for kitchen
appliances or toys. We include it in GEX to serve as a demonstration of capacitive touch
sensing, and it could possibly be used for simple capacitive sensors as well, such as a water
level measurement.

The TSC requires a specific topology with a sampling capacitor connected close to the
microcontroller pin, which may not be possible on a universal GEX module; for this reason,
the touch sensing feature is best demonstrated on the STM32F072 Discovery development
kit, which includes a 4-segment touch slider shown in Figure 8.7.

48

8.4. Touch Sensing

Figure 8.7: The touch slider on a STM32F072 Discovery board

The principle of capacitive touch sensing using the T'SC is well explained in the microcon-
troller’s reference manual [42], the TSC product training materials [43, 44] and application
notes from ST Microelectronics [45, 46, 47, 48]. A key part of the TSC is a set of analog
switches which can be combined to form several different signal paths between external
pins, Vpp, GND, and an analog comparator. Two input pins are needed for every touch
sensing channel: the sensing pad connects to one, the other is connected through a sampling
capacitor (47 nF on the Discovery board) to GND.

Charge §+3.3V

Sense pad Clear
X pF l Vir o—— — out

I

Figure 8.8: A simplified schematic of the touch sensing circuit

Capacitive sensing is a sequential process described in the following steps:

1. The sampling capacitor is discharged by connecting its free end to GND.

2. The sensing pad is connected to Vpp (+3.3V) and, acting as a capacitor, charged to
this voltage. It stores a small amount of charge, depending on its capacitance—this
is the variable property we are trying to measure.

3. The free terminals of the two capacitors (the sensing pad and the sampling capacitor)
are connected together and their voltages reach an equilibrium as a portion of the
stored charge leaves the sensing pad and flows into the bigger capacitor.

4. The steps (2) and (3) are repeated until the sampling capacitor’s voltage exceeds a
fixed threshold (set to a half of the supply voltage). The number of cycles needed to
charge the sampling capacitor corresponds to the capacitance of the sensing pad.

A real voltage waveform measured on the sensing pad using an oscilloscope is shown in
Figure 8.9.

49

8. Non-communication Hardware Functions

Foom:20.00us

Figure 8.9: A voltage waveform measured on the touch sensing pad. The bottom side of the
envelope equals the sampling capacitor’s voltage—this is the phase where both capacitors are
connected. The detailed view (middle) shows the individual charging cycles. The bottom
screenshot captures the entire waveform, left to continue until a timeout, after the analog
comparator was disabled.

50

Part I

Implementation

o1

92

Chapter 9

Conceptual Overview

GEX is designed to be modular and easy to extend. The user-facing functionality is
composed of independent software modules, called functional blocks or units, which can be
configured by the user to fit their application needs. Units implement low-level logic to
work with hardware peripherals of the microcontroller, and expose this functionality to
the client application, running on the PC, through a communication interface. A diagram
showing the entire stack, from the user application down to hardware peripherals, is shown
in Figure 9.1.

User application

Unit handles
Client library
System messages
PC | | I 1
................................ Communication interface
GEX I I 3

------------ Core framework

1 framework)
| services Unit messages
'

'
\

s--- Units
| | |
STM32 driver library

Hardware
peripherals

Figure 9.1: The “GEX stack”, from a user application down to hardware

When we work with GEX, it is through units. The platform without units would be
just an empty shell, the bare core framework; this underlying system will be described in
Chapter 10. We will explore the individual units in Chapter 13, after going through the
hardware realizations in Chapter 15 and covering the communication protocol in Chapter 12.

93

9. Conceptual Overview

B a1 Physical User Interface

The firmware can be flashed to a STM32 development board, or a custom PCB. The
particulars of those form factors will be discussed in Chapter 15.

Power Status

LED LED
P
Alternative USB)
attachment methods |
—] USB Reset button |— Optional
] usB | Wieless Wireless GEX module Lock button [May sh
] gateway adapter } ay share one
physical switch
UART BOOt bUttOﬂ or use jumpers
—1 usB USB/serial
converter L)
GPIO header

Figure 9.2: Physical user interface of a GEX module

All GEX hardware platforms have some common characteristics (Figure 9.2):

¢ Power LED - a simple indication that the board is powered on

e Status LED — periodic flashing every 3s indicates correct operation, continuous
light a software error!; other light patterns may be shown as feedback to user actions
or received commands

¢ Reset button — resets the MCU; this is particularly useful during firmware develop-
ment as an alternative to re-connecting the USB cable

e Lock button — enables or disables access to configuration files through the virtual
mass storage device

o Boot button — when held during restart (that is, while the reset button is released),
the Device Firmware Update (DFU) mode [49] is activated and a new firmware image
can be flashed over the USB connection using dfu-util [50] or other firmware update
application

¢ GPIO header — a pin header exposing the MCU’s GPIO pins to be connected to
external circuitry

¢ Communication interface — a connection to the host PC; multiple options may
be available to choose from, a direct USB connection being the primary and always
available option

. 9.2 GEX-PC Connection

Figure 9.2 shows three ways to connect the module to a PC. Each communication interface
has its advantages and drawbacks, and is suitable for different use-cases.

!The microcontroller will then automatically restart within a few seconds due to a watchdog timeout.

54

9.3. Controlling GEX

e Direct USB connection

This is the primary and most straightforward connection method. We use the
CDC/ACM and MSC USB classes to have the module appear as a virtual COM port
and a mass storage device, as described in Section 4.3. This method is the fastest of
the three and works out-of-the-box on Linux and MacOS. On MS Windows it may
require the right software driver to be installed and assigned manually?.

¢« Hardware UART

The hardware UART used as a communication interface is mapped to pins PA2 and
PA3 to be compatible with the built-in USB/UART converter on STM32 Nucleo
development boards. This interface is functionally identical to the CDC/ACM
connection, but the physical UART is necessarily slower and does not implement flow
control.

¢ Wireless connection

A wireless connection is implemented using a radio module on the GEX board. To
use it we need a counterpart, the wireless gateway, which connects to the PC via USB

and acts as a CDC/ACM device.

The USB connection is always enabled first on start-up. GEX waits its for enumeration
by the host PC. When not enumerated in a few seconds, it concludes that the interface is
not active and tries other enabled options. The wireless module, connected through SPI,
can be detected by reading one of its registers that should have a known value. A UART
interface cannot be tested so reliably, thus it is always considered active?.

B 9.3 Controlling GEX

GEX is a platform providing access to low-level hardware to high-level applications. However,
this “high level” is relative. As was shown in Figure 9.1, the “GEX stack” ends with a
client library, a software library used by the user application.

The communication protocol (one level lower in the diagram), which will be explained
in Chapter 12, may be implemented as part of the client library in any programming
language and on any platform; in theory, it is even possible to control GEX from another
microcontroller. The client library implements, besides the protocol itself, other higher-level
logic, and gives the user access to individual units using an abstraction called unit handles.

Any logic above the client library is in the hands of the user, which means that, to
use GEX, they have to program a user application. Proof-of-concept client libraries in
languages C and Python are provided for this purpose, and will be explained in Chapter 16.

2The STM32 virtual COM port driver [51] has been tested to work with GEX on MS Windows version 7
and 8, though it must be manually assigned to the device in the Device Manager. MS Windows 10 and
later should support CDC/ACM as a virtual COM port natively.

3 A detection of the UART connection would be possible by measuring the Rx pin voltage, which should
idle at a high level (here 3.3 V). This was not implemented in the initial firmware version.

95

9. Conceptual Overview

B 9.4 Device Configuration

The core framework and each of the units have a number of adjustable options determining
their behavior. Those settings are internally stored in a binary form, but to make their
adjustment comfortable for the user, they are mapped to text configuration files in the INI
format.

B 9.4.1 INI File Format

INI files are, in our implementation, simple text files containing three basic syntax elements:
comments, sections, and key-value entries. Sections group the key-value pairs into logical
blocks, e.g., the configuration of individual units.

o Comments start with the hash symbol (#) and end at the end of line
o Sections are textual labels enclosed in square brackets ([UNITS])

¢ Key-value entries are composed of a label, the equals sign, and its value; values
may be text strings, decimal or hexadecimal numbers, lists of numbers separated by
commas, or any other format appropriate for the particular key

An example of the INI syntax is shown below.

comment
[section]

a = 123

b = OxFF
port = A
pins = 1,2,3

B 9.4.2 Configuration Files Structure

The configuration is split into two files: UNITS.INI and SYSTEM. INI. The system configura-
tion file has a simple structure and does not need much explanation beyond the comments
already included in it; an example of its content is captured in Listing 1. The other file, as
its name suggests, serves to configure GEX units.

The units file, illustrated in Listing 2, is more complex, and interactive. The top part, a
[UNITS] section, lists all available unit types. A unit is created by writing its name (an
arbitrary label composed of letters, numbers, and underscore) next to the desired type.
Each unit is then configured in a separate section lower in the file; however, how does one
know what keys are needed for which unit? This problem is solved by interactivity of the
file.

After adding a unit name next to its type, we save the file. The disk temporarily
disappears from the device list as the file’s content updates. When we reopen the file, a

o6

9.4. Device Configuration

SYSTEM.INI

[SYSTEM]

Data link accessible as wvirtual comport (Y, N)
expose-vcom=Y

Show comments in INI files (Y, N)
ini-comments=Y

Enable debug UART-Txz on PA9 (Y, N)
debug-uart=Y

Output core clock on PA8 (Y, N)
mco-enable=N

Output clock prediv (1,2,...,128)
mco-prediv=128

-—— Allowed fallback communication ports —-—-—

UART Tx:PA2, Rxz:PA3
com—-uart=N
com—uart-baud=115200

nRF24L01+ radio

com-nrf=N

Radio channel (0-125)
nrf-channel=76

Network prefiz (hex, 4 bytes)
nrf-network=12:00:09:4C

Node address (1-255)
nrf-address=1

Listing 1: The SYSTEM. INI configuration file

section for the new unit will be appended for us to configure as necessary. To delete a unit,
it is sufficient to remove its name from the list at the top and let the file regenerate the
same way; the unit’s section will disappear.

It is not uncommon that the entered (or default) configuration is invalid and the unit
cannot be enabled. The error is reported by inserting a comment into the INI file, at the
top of the section of the failing unit. This error message disappears when the problem is
corrected.

Once we are satisfied with the configuration, it may be stored to the module’s permanent
memory. This is done by pushing the Lock button again, which also deactivates the virtual
storage device.

It may be interesting to know that the configuration files can also be read and modified
through the communication interface. A simple configuration editor (Figure 9.3) was

o7

9. Conceptual Overview

UNITS.INI

[UNITS]
Create units by adding their names next to a type (e.g. DO=A,B),
remove the same way. Reload to update the unit sections below.

Digital output

DO=1led

Digital input with triggers
DI=btnl,btn2

Neopixzel RGB LED strip

NPX=

I2C master

I2C=i2c

#...

[I2C:i2c@1]
Peripheral number (I2Cz)
#...

Listing 2: Part of the UNITS.INI configuration file

developed to demonstrate this feature. Besides applications like this, we can use the
programmatic configuration access to change GEX settings automatically by the client
application. The changes may be persisted by a command, but that is not required, which
lets us use them temporarily without modifying the stored configuration.

o8

9.4. Device Configuration

X GEX config file editor

) Reload [Write Changes /" Persist

UNITS.INI

GEX v0.3.1 on STM32F072-ZERO

built May 4 2018 at 22:13:37

[UNITS]

Create units by adding their names next to a type (e.g. DO=A,B),
remove the same way. Reload to update the unit sections below.

Digital output

DO=

Digital input with triggers
DI=

Neopixel RGB LED strip

NPX=

I2C master

I2C=i2c

SPI master

SPI=

Serial port

USART=

1-Wire master -

T o

Figure 9.3: Configuration file editor GUI built using the GEX client library and PyQt4

99

60

Chapter 10

Internal Application Structure

The firmware is built around a core framework which provides services to units, such as
the settings storage, resource allocation, message delivery, and periodic updates. In this
chapter, we will focus on the structure of this framework and the services provided by it.

Decoupling the Rx interrupt
from command processing

N

v Message + Job Queue)<=
(ué / Scheduled reporting
USB e 2 of events from interrupts
CDC/ACM %
z
o Queue
e | Conmnision || proceseng | [
q reau Inyrrame
Connection | | Multiplex —> P);rser
Wireless TinyFrame Job Message
Module Builder Execution Delivery
3 Asynchronous
H Requests to units yevents
System Commands > @
B and Settings Handler [Sl I I"C I GPIOI ADC
~
]
= ' @
L [l
[:
Hardware
USB FAT16) . . .
byised Emulator INI File Parser / Builder [+ Unit Registry F&Sé’lgtff;
[}
; v

----------------- »| Settings Storage

Figure 10.1: Block diagram showing the internal logic in the GEX firmware

61

10. Internal Application Structure

B 10.1 Internal Structure Block Diagram

The data flows and other internal logic of the firmware are depicted in Figure 10.1, with more
explanation following in this chapter. The interchangeable role of the three communication
interfaces can be clearly seen in the diagram, as well as the central role of the message
queue, which decouples interrupts from the processing thread.

The framework provides the following services to units:

o Hardware resource allocation (Section 10.3)
o Settings storage and loading (Section 10.4)
o Unit life cycle management (Section 10.2)

o Message sending and delivery (Section 10.5)
o Interrupt routing (Section 10.6)

B 10.2 Unit Life Cycle and Internal Structure

GEX’s user-facing functions, units, are implemented in unit drivers. Those are independent
modules in the firmware that the user can enable and configure, in one or more instances.
In practice, we are limited by hardware constraints: i.e., there may be only one ADC
peripheral, or two SPI ports. The assignment of those hardware resources to units is
handled by the resource registry (Section 10.3).

FEach unit is identified by a name and a callsign, which is a number that serves as an
address for message delivery. A unit is internally stored as a data object with the following
structure:

e Name

 Callsign (one byte)

¢ Configuration parameters loaded from the unit settings

e State variables updated at run-time by user commands or internal functions

e A reference to the unit driver

The unit driver handles commands sent from the host PC, initializes and de-initializes
the unit based on its settings, and implements other aspects of its function, such as periodic
updates and interrupt handling.

When the units configuration file is modified, all units are de-initialized and removed.
The binary settings are then updated based on the new values, verifying that the requested
resources are available, and the units that can be enabled are subsequently initialized and
made available to the user.

62

10.3. Resource Allocation

DI unit - Resource registry
0x02
PAG SPI1 | 0x01 PA7 |0x01 PC1 | 0x03
SPI unit SPI2 PA8 [0x01 | | PC2 [0x03
0x01
: PA5 | 0x01 PBO | 0x02 PDO |system
PAg D DO unit
0x03 PA6 | 0x01 PCO |0x03 | | PD1 | nec.
AN AN

PD1 - not available

Figure 10.2: An example allocation in the resource registry

B 10.3 Resource Allocation

The microcontroller provides a number of hardware resources that require exclusive access:
GPIO pins, peripheral blocks (SPI, I?°C, UART...), and DMA channels. If two units tried
to control the same pin, the results would be unpredictable; similarly, the output of a
multiply-accessed serial port could become a useless mix of the different data streams.

To prevent multiple access, the firmware includes a resource registry (Figure 10.2). Each
individual resource is represented by a field in a resource table together with its owner’s
callsign. Initially all resources are free, except for those not available on the particular
platform (e.g., a GPIO pin PD1 may be disabled if not present on the microcontroller’s
package).

The resources used by the core framework are taken by a virtual unit SYSTEM on start-up
to prevent conflicts with the user’s units. This is the case of the status LED, the Lock
button, USB pins, the communication UART, the pins and an SPI peripheral connecting
the wireless module, pins used for the crystal oscillator, and the timer/counter which
provides the system timebase.

B 104 Settings Storage

Binary settings storage

Drivers create, load and
serialize unit instances,
generate and parse
UNITS.INI sections

System settings
options not tied to
individual units

Unit

Unit
DO driver -
Unit

4[SPI driver k‘i‘
Unit
ADC driver

Settings manager
binary storage / INI file
parsing and generation

i \

UNITS.INI SYSTEM.INI

Unit settings

Figure 10.3: Structure of the settings subsystem

63

10. Internal Application Structure

The system and unit settings are stored, in a binary form, in designated pages of the
microcontroller’s flash memory. The serialization and parsing of unit settings is implemented
by the respective unit drivers. Figure 10.3 shows the organization of the settings subsystem;
note that the “Settings manager” block has been omitted in Figure 10.1 for clarity, to
better represent the data flows.

The settings persist in the flash memory even after a firmware update, which might add
or remove some data fields, or otherwise rearrange the binary structure. Assuming the
general layout remains unchanged, this mainly concerns the data areas holding unit (and
system) settings. Backward compatibility is achieved by prefixing each storage area with
its version number. When the settings are loaded by an updated firmware, it always first
checks the version field and decides which format to use to parse the saved data.

B 105 Message Passing

One of the key functions of the core framework is to deliver messages from the host PC to
the right units. The TinyFrame protocol is used, described in detail in Chapter 12; it is
represented by the “TinyFrame Parser” and “TinyFrame Builder” blocks in Figure 10.11.

Two groups of messages exist: system messages and unit messages. System messages
can, for instance, access the INI files, or request a list of available units. Unit messages are
addressed to a particular unit, and their payload format is defined by the unit’s driver. An
incoming message is inspected and delivered to the appropriate recipient, or responded to
with an error message.

In addition to message delivery, the core framework also provides event reporting. Events
are messages generated by units and sent to the host to notify it about asynchronous events.

This high-level functionality resides above the framing protocol, which will be described
in Chapter 12. The message format is shown in Section 12.7.

B 106 Interrupt Routing

Interrupts are an important part of almost any embedded application. They provide a
way to rapidly react to asynchronous external or internal events, temporarily leaving the
main program, jumping to an interrupt handler routine, and then returning back after the
event is handled. Interrupts are also the way FreeRTOS implements multitasking without
a multi-core processor.

In Arm Cortex-MO the interrupt handlers table, defining which routine is called for
which interrupt, is stored in the program memory and cannot be changed at run-time. This
is a complication for the modular structure of GEX where different unit drivers may use
the same peripheral, and we would want to dynamically assign the interrupt handlers based
on the active configuration.

'The framing library is not split into those two blocks in the source code, but the parts are functionally
independent

64

10.7. FreeRTOS Synchronization Objects Usage

Let us have a look at a sample interrupt handler, in this case serving four different DMA
channels, as is common in STM32 microcontrollers:

void DMA1 Channel4 5 6_7_IRQHandler(void)

{
if (LL_DMA_TIsActiveFlag GI4(DMA1)) { /* handle DMA1 channel 4 */ }
if (LL_DMA_IsActiveFlag GI5(DMA1)) { /* handle DMA1 channel 5 */ }
if (LL_DMA_IsActiveFlag GI6(DMA1)) { /* handle DMA1 channel 6 */ }
if (LL_DMA_IsActiveFlag_GI7(DMA1)) { /* handle DMA1 channel 7 */ }

}

It is evident that multiple units might need to use the same handler, even at the same
time, since each DMA channel is configured, and works, independently. GEX implements a
redirection scheme to accomplish such interrupt sharing: all interrupt handlers are defined
in one place, accompanied by a table of function pointers. When a unit driver wants to
register an interrupt handler, it stores a pointer to it in this redirection table. Then, once
an interrupt is invoked, the common handler checks the corresponding entry in the table
and calls the referenced routine, if any. Conversely, when a unit driver de-initializes a unit,
it removes all interrupt handlers it used, freeing the redirection table slots for other use.

B 10.7 FreeRTOS Synchronization Objects Usage

The firmware is built around FreeRTOS (Chapter 5) and a number of its synchronization
objects and patterns are used to make its operation more robust.

B 10.7.1 Message and Job Queue

The message and job queue, seen in Figure 10.1, is used to decouple asynchronous interrupts
from message transmission. All three communication interfaces use interrupts for the
asynchronous handling of incoming messages. The same interrupt handler receives an event
after a transmission was completed. The queue ensures that messages can be received
during the transmission of a large response that demands the use of multiple messages.

B 10.7.2 Lock Objects

The “transmission complete” interrupt signals the readiness to transmit more data to the
message-sending task using a binary semaphore. This semaphore is taken by the task
before sending a block of data, and released by the ISR, ensuring that the task waits for
the transmission to complete before attempting to send more data.

Two mutexes are used in the firmware: one that guards access to the TinyFrame Builder
until the previous message was fully transmitted, and one to guard a shared memory
buffer (reused in several places to save memory and avoid its re-allocation). The hardware
resource registry (explained in Section 10.3) does not need mutexes for individual resources,
as concurrent access to those fields can never happen thanks to the way the system is
organized; resources are always taken or released sequentially by the same task.

65

66

Chapter 11

Working with the GEX Source Code

Understanding the GEX source code layout is impor-
tant before attempting to implement any changes or
to port it to a different microcontroller type. The
directory layout is shown in Figure 11.1.

The GEX core framework resides in the User
folder, and units are defined in User/units. Each unit
driver must be registered in the file platform.c. The
header file plat_compat.h defines platform-specific
constants and macros, defining parameters such as
pin assignments or the clock speed. The User folder
is actually a Git submodule called “gex-core” and
is kept as a separate project; platform-specific cus-
tomizations are managed using compile flags passed
from the Makefile.

B 111 Porting to a New Platform

When porting GEX to a new platform, the basis of
the project can be generated by the STM32CubeMX
code generator [52], using the Makefile output preset.
We have to enable FreeRTOS, select a USB class (the

—— build
firmware.bin
firmware.dfu

+— Drivers
CMSIS
L— Device / ST / STM32FOxx
STM32FO0xx_HAL_Driver

— Middlewares / Third_Party / FreeRTO0S

— Src

L main.c

— User

— USB / STM32_USB_Device_Library
Class

CDC
MSC
MSC_CDC

Core
— platform
plat_compat.h
platform.c
— units

adc
digital_out

— freertos.c

— FreeRTOSConfig.h
L— gex.mk

L— Makefile

Figure 11.1: General structure of
the source code repository

choice does not matter, e.g., CDC/ACM can be used), and configure the system clock.

The configuration dialog gives a choice between the LL (Low Level) and HAL driver

libraries; the HAL library uses a lot of program memory and often contains software bugs,
while the LL library is leaner but harder to use. The LL library was used in the STM32F(072
port for its smaller size.

Some files generated by STM32CubeMX were moved into the User folder (e.g., the
FreeRTOS configuration and initialization, or the system time base generation), as they
are mostly platform-independent. The modified USB Device library was copied here as
well, as it had to be modified to support the definition of a composite class with custom
descriptors.

The rest of the porting process, after generating the base project, can be summarized in
the following bullet points. These are written as a checklist for the developer working on a

67

11. Working with the GEX Source Code

new port; an existing, functional port may be consulted as a reference during the porting
process.

o Initialize the project folder as a Git repository.

¢ Add the “gex-core” Git submodule as the User folder, and create a Git branch in it
for the new platform.

¢ Fix the Makefile generated by STM32CubeMX; it usually contains duplicate entries
in the file lists, and other errors. Ensure the build (“make” invocation in the terminal)
succeeds before making any other changes.

e Delete the USB Device library from the Middlewares/ST folder; GEX uses the
modified version included in User/USB.

e Move the GPIO, FreeRTOS, USB, and other peripheral initialization from Src and
Inc aside for later reference; the code in those folders should only configure the system
clock, call the GEX initialization function “GEX_PreInit()”, and start FreeRTOS
with “MX_FREERT0S_Init()” and “osKernelStart()”.

e Add “include User/gex.mk” and “GEX_PLAT=MYPLATFORM” at the top the Makefile,
with the desired platform name in place of “MYPLATFORM”; the name must be a valid
C identifier.

o Add “GEX_CFLAGS”, “GEX_SOURCES”, “GEX_INCLUDES”, “GEX_CDEFS” into the appro-
priate file lists in the Makefile; those variables are exported from User/gex.m and
contain lists of GEX source files and compiler flags.

Use “$(foreach x,$(GEX_SRC_DIR),$(wildcard $(x)/*.c))” to include all source
files from “GEX_SRC_DIR” in the “C_SOURCES” list.

e Remove all definitions of “Error_Handler()”, “FULL_ASSERT” and “assert_param()”
from the files left inside Inc and Src, and add “#include "stm32_assert.h"” to
Src/main.h. GEX uses the functions declared in User/stm32_assert.h for asser-
tions.

e Update User/FreeRT0SConfig.h and User/platform/plat_compat.h for the new
platform. Preprocessor directives like “#ifdef” are used to define configuration
applicable only to one platform, without affecting others.

o Update User/platform/platform.c to register the initially supported units; a good
choice is the DO (Digital Output) unit that is straightforward to update and can be
used to verify the platform’s functionality.

Define a flag like “UNIT_DO=1" at the top of the Makefile for each registered unit.
User/gex.m may be used as a reference for the expected variable names. This is used
to conditionally enable or disable the inclusion of the particular unit’s source files in
the compilation.

e Update the USB functions in the User/USB folder according to the ones previously
generated by STM32CubeMX. The USB Device library uses these as an interface to
the different USB peripheral versions.

68

11.1. Porting to a New Platform

o Update other platform-dependent code (such as the debug UART configuration). The
compiler should warn about those occurrences when trying to build the project.

e Try to build the project by running “make” in the terminal.

After the firmware successfully compiles, we can flash it to the MCU using ST-Link by
running “make flash”, or through the DFU interface with “make dfu”.

The first thing to verify after flashing the firmware is that the debug UART’s configuration
is correct and we can see the log output, which should be available on pin PA9 at 115200 baud.
Thanks to a generous usage of assertions, most errors should produce helpful log messages in
the log. We can then proceed to experiment with the device, testing the features described
in Chapter 9 while observing the debug log for any anomalies.

69

70

Chapter 12

Communication Protocol

GEX can be controlled through a hardware UART, the USB, or over a wireless link. To
minimize the firmware complexity, all the three connection methods use the same binary
messaging protocol and are functionally interchangeable.

GEX uses the TinyFrame [53] framing library, de- TinyFrame AP
veloped, likewise, by the author, but kept as a separate Send
project for easier re-use in different applications. The T Frame <
library implements frame building and parsing, includ- building ppaeli]
. . . . Binary & Received message
ing checksum calculation, and provides high-level API. gata parsing ID / Type listeners
. . . > engine >
Both peers, GEX and the client library running on Rx - Periodic update

the host PC, are at an equal level: either side can
independently send a message at any time. The com-
munication is organized in transactions; a transaction
consists of one or more messages going in either direction. A message can be stand-alone, or
chained to another, typically a request, using the frame ID field; this is the major advantage
over text-based protocols, like AT commands, where all messages are independent and their
relation to each other is not always clear.

Figure 12.1: TinyFrame API

B 12.1 Binary Payload Structure Notation

Binary payloads are described in several places of this text. We use a shortened notation
derived from the C language to represent field data types:

e bool — 8bit field allowing values 0 (false) and 1 (true)

e u8, ul6, ud2 — unsigned 8-, 16-, or 32-bit integer

e 18,116, 132 — signed (two’s complement) 8-, 16-, or 32-bit integer

e char — an 8-bit ASCII character

o float — single-precision (32-bit) IEEE 754 [54] floating point number

o double — double-precision (64-bit) IEEE 754 [54] floating point number

e u8[] — array of variable length

e u8[n] — array of length n

e cstring — zero-terminated character string (like char[], ending with a 0x00 byte)

71

12. Communication Protocol

B 12.2 Frame Structure

Message frames have the following structure (all little-endian):

“TinyFrame” frame structure, as used in GEX

e 0x01 start-of-frame marker

e ul6 frame ID

e ul6 payload length

e u8 frame type

e u8 header checksum

e u8[] payload

o u8 payload checksum (omitted for empty payloads)

Frame ID, which could be better described as Transaction ID, uniquely identifies each
transaction. The most significant bit is set to a different value in each peer to avoid ID
conflicts, and the rest of the ID field is incremented with each initiated transaction.

B 123 Message Listeners

After sending a message that should receive a response, the peer registers an ID listener
with the ID of the sent message. A response reuses the original frame ID and when it
is received, this listener is called to process it. ID listeners can also be used to receive
multi-part messages re-using the original ID.

Frame type describes the payload and does not have any prescribed format in TinyFrame;
its values are defined by the application. A type listener may be registered to handle all
incoming messages with a given frame type. It works in a similar way to an ID listener,
but has a lower priority.

Fach message can be handled by only one listener, unless the listener explicitly requests
it to be passed on. Messages not handled by any listener are given to a default listener,
which can, e.g., write an error to a debug log.

B 124 Designated Frame Types

Table 12.1 lists the frame types defined by GEX. It is divided into four logical sections:
General, Bulk Read/Write, Unit Access, and Settings. The payloads belonging to those
frame types will be outlined in the following sections.

72

12.5. Bulk Read and Wrkite Transactions

Table 12.1: Frame types used by GEX

Frame type Function Note
0x00 Success Payload depends on context
0x01 Ping GEX responds with Success and its version string
0x02 Error Payload contains the error message
0x03 Bulk Read Offer An offer of data to read using 0x04
0x04 Bulk Read Poll Requesting to read a block of data
0x05 Bulk Write Offer An offer to receive a bulk write transaction
0x06 Bulk Data Used for both reading and writing
0x07 Bulk End Marks the last “Bulk Data” frame
0x08 Bulk Abort
0x10 Unit Request Request to a unit
0x11 Unit Report Spontaneous event generated by a unit
0x20 List Units Read a list of all instantiated units
0x21 INI Read Request a bulk read transaction of an INI file
0x22 INI Write Request a bulk write transaction of an INI file
0x23 Persist Config Write updated configuration to flash

. 12.5 Bulk Read and Write Transactions

The bulk read and write transactions are generic, multi-message exchanges which are used
to transfer the INI configuration files. They could additionally be used by some future unit
requiring to transfer a large amount of data (e.g., to read image data from a camera).

The reason for splitting a long file into multiple messages, rather than sending it all
in one, lies in the hardware limitations of the platform, specifically its small amount of
RAM (the STM32F072 has only 16kB). A message cannot be processed until its payload
checksum is received and verified; however, the configuration file can have several kilobytes,
owning to the numerous explanatory comments, which would require a prohibitively large
data buffer. The chunked transaction could, additionally, be extended to support message
re-transmission on timeout without sending the entire file again.

A read or write transaction can be aborted by a frame 0x08 (Bulk Abort) at any time,
though aborting a write transaction may leave the configuration in a corrupted state. As
hinted in the introduction of this chapter, a transaction is defined by sharing a common
frame ID. Thus, all frames in a bulk transaction must have the same ID, otherwise the ID
listeners would not be called for the subsequent messages.

73

12. Communication Protocol

Figure 12.2 shows a diagram of the bulk read and write data flow.

B 125.1 Bulk Read

To read an INI file, we first send a frame 0x21 (INI Read), specifying the target file in the
payload:

Frame 0x21 (INI Read) payload structure

e u8 which file to write

— 0 ... UNITS.INI
— 1...SYSTEM.INI

What follows is a standard bulk read transaction with the requested file. GEX offers
the file for reading with a frame 0x03 (Bulk Read Offer):

Frame 0x03 (Bulk Read Offer) payload structure

e u32 full size of the file in bytes

e u32 largest chunk that can be read at once

Now we can proceed to read the file using 0x04 (Bulk Read Poll), which is always
responded to with 0x06 (Bulk Data), or 0x07 (Bulk End) if this was the last frame. Data
frames have only the useful data as their payload. The 0x04 (Bulk Read Poll) payload
specifies how many bytes we want to read:

Frame 0x04 (Bulk Read Poll) payload structure

e u32 how many bytes to read (at most)

Frame 0x06 (Bulk Data) or 0x07 (Bulk End) payload in a “read” transaction

e char[] a chunk of the read file

B 12.5.2 Bulk Write

To overwrite an INT file, we first send a frame 0x22 (INI Write) with the file size as its
payload. The name of the file is irrelevant, as it is detected automatically by inspecting the
content.

Frame 0x22 (INI Write) payload structure

e u32 size of the written file, in bytes

The write request is confirmed by a frame 0x05 (Bulk Write Offer) sent back:

74

12.6. Reading the List of Units

Host
Device
Host
Device

INI Read request INI Write request i
I

file: 0 (UNITS.INI) :

: / Bulk Write Offer
Bulk Read Offer | ! - |

— Bulk Data
i | Bulk Read Poll T
: / Success £
Bulk Data - |

— Bulk End
. | Bulk Read Poll B
: / Success :
Bulk End -

-« | s i

Figure 12.2: The bulk read and write transactions

Frame 005 (Bulk Write Offer) payload structure

o u32 total bytes to write (here copied from the request frame)

e u32 how many bytes may be written per message

We can now send the file as a series of frames of type 0x06 (Bulk Data), or 0x07 (Bulk End)
in the last frame, with chunks of the data as their payloads. Each frame is confirmed by
0x00 (Success).

Frame 0x06 (Bulk Data) or 0x07 (Bulk End) payload in a “write” transaction

e char[] a chunk of the written file

B 12.5.3 Persisting the Changed Configuration to Flash

The written INI file is immediately parsed and the settings are applied. However, these
changes are not persistent: they exist only in RAM and will be lost when the module
restarts. To save the current state to Flash, issue a frame 0x23 (Persist Config). This has
the same effect as closing the virtual mass storage by pushing the Lock button.

B 126 Reading the List of Units

The frame 0x20 (List Units) requests a list of all available units in the GEX module. The
list includes all units’ callsigns, names and types. The response payload has the following
format:

75

12. Communication Protocol

Frame 0x20 (List Units) response structure

¢ u8 the number of available units
e For each unit:

— u8 unit callsign
— cstring unit name
— cstring unit type

B 12.7 unit Requests and Reports

Frame types 0x10 (Unit Request) and 0x11 (Unit Report) are dedicated to messages sent to

and by unit instances. Each has a fixed header (inside the payload) followed by unit-specific
data.

B 12.7.1 Unit Requests

Unit requests deliver a message from the host to a unit instance. Unit drivers implements

different commands, each with its own payload structure. The frame 0x10 (Unit Request)
has the following structure:

Frame 0x10 (Unit Request) payload structure

e u8 unit callsign
e u8 command number, handled by the unit driver

e u8[] command payload, handled by the unit driver; its size and content depend
on the unit driver and the particular command number, as defined in Chapter 13

The most significant bit of the command byte (0x80) has a special meaning: when set,
the message delivering routine responds with 0x00 (Success) after the command completes,
unless an error occurred. That is used to get a confirmation that the message was delivered
and the module operates correctly (as opposed to, e.g., a lock-up resulting in a watchdog
reset). Requests which normally generate a response (e.g., reading a value from the unit)
should not be sent with this flag, as that would produce two responses at once.

B 12.7.2 Unit Reports

Several unit types can produce asynchronous events, such as reporting a pin change, or a

triggering condition. The event is timestamped and sent with a frame type 0x11 (Unit Re-
port):

76

12.7. Unit Requests and Reports

Frame 0z11 (Unit Report) payload structure

e u8 unit callsign
e u8 report type, defined by the unit driver
e u64 event time (microseconds since power-on)

e u8[] report payload; similar to requests, the payload structure depends on the
unit driver and the particular report type, as defined in Chapter 13

7

78

Chapter 13

Units Overview, Commands and Events Description

This chapter describes all functional blocks (units) implemented in GEX, version 1.0. The
term “unit” will be used here to refer to both unit types (drivers) or their instances where
the distinction is not important.

Each unit’s description will be accompanied by a corresponding snippet from the
configuration file, and a list of supported commands and events. The commands and
events described here form the payload of TinyFrame messages 0x10 (Unit Request) and
0x11 (Unit Report), as described in Section 12.7.

The number in the first column of the command (or event) tables, marked as “Code”, is
the command number (or report type) used in the payload to identify how the message
data should be treated. When the request or response payload is empty, it is omitted from
the table. The same applies to commands with no response, in which case adding 0x80
to the command number triggers a type 0x00 (Success) response after the command is
finished.

B 13.1 General Notes

B 13.1.1 Unit Naming

Unit types are named in uppercase (SPI, IWIRE, NPX) in the INI file and in the list of
units. Unit instances can be named in any way the user desires; using lowercase makes it
easier to distinguish them from unit types. It is advisable to use descriptive names, e.g.,
not “pinl”, but rather “button”.

B 13.1.2 Packed Pin Access

Several units facilitate an access to a group of GPIO pins, such as the digital input and
output units, or the SPI unit’s slave select pins. The STM32 microcontroller’s ports have 16
pins each, most of which can be configured to one of several alternative functions (e.g., SPI,
PWM outputs, ADC input). As a consequence, it is common to be left with a discontiguous
group of pins after assigning all the alternative functions needed by an application.

For instance, we could only have the pins 0, 1, 12-15 available on a GPIO port. GEX
provides a helpful abstraction to bridge the gaps in the port: The selected pins are packed
together and represented, in commands and events, as a block of six pins (0x3F) instead of

79

13. Units Overview, Commands and Events Description

GPIO port

[15[14[13]12]11]10[9| 8] 7| 6| 5] 4] 3] 2] 1| 0]

Commands / events

l15[14[13[12] 1] 0|

Figure 13.1: Pin packing

their original positions in the register (0xF003). This scheme is shown in Figure 13.1. The
translation is done in the unit driver and works transparently, as if the block of pins had
no gaps—all the referenced pins are updated simultaneously without glitches. Where pin
numbers are used, the order in the packed word should be provided—in our example, that
would be 0-5, counting from the least significant bit.

B 13.2 Digital Output

The digital output unit provides a write access to one or more pins of a GPIO port. This
unit additionally supports pulse generation on any of its pins; this is implemented in
software, with timing derived from the system timebase, in order to support pulses on all
pins regardless of hardware PWM support. Pins in commands are expressed in the packed

format (Section 13.1.2).

B 13.2.1 Digital Output Configuration

[DO:out@1]
Port name
port=A

pins=0

Initially high pins
initial=

Open-drain pins

open-drain=

B 13.2.2 Digital Output Commands

Pins (comma separated, supports ranges)

Code Function Structure
0 WRITE Request:
Write to all pins e ul6 new value
1 SET Request:

Set selected pins to 1

e ul6 pins to set

80

13.3. Digital Input

Code Function Structure

2 CLEAR Request:
Set selected pins to 0 e ul6 pins to clear

3 TOGGLE Request:
Toggle selected pins e ul6 pins to toggle

4 PULSE Request:
Generate a pulse on the selected pins. e ul6 pins to pulse
The microsecond scale may be used only e bool active level
for 0-999 us. e u8 scale: 0-ms, 1-pus

e ul6 duration

B 13.3 Digital Input

The digital input unit is the input counterpart of the digital output unit. In addition to
reading the immediate digital levels of the selected pins, this unit can report asynchronous
events on a pin change.

All pins of the unit may be configured either for a rising, falling, or for any change
detection; due to a hardware limitation, the same pin number may not be used for event
detection on different ports (e.g., Al and B1) at the same time. In order to receive a pin
change event, we must first arm the pin using a command; it can be armed for a single
event, or it may be re-armed automatically with a hold-off time. It is further possible to
automatically arm selected pins on start-up, removing the need to arm them, e.g., after the
module restarts or is re-connected.

B 13.3.1 Digital Input Configuration

[DI:ine@2]

Port mame

port=A

Pins (comma separated, supports ranges)
pins=10-8,3-0

Pins with pull-up

pull-up=10,9

Pins with pull-down

pull-down=0

Trigger pins activated by rising/falling edge
trig-rise=10

trig-fall=

Trigger pins auto-armed by default
auto-trigger=10

81

13. Units Overview, Commands and Events Description

Triggers hold-off time (ms)
hold-off=100

Bl 13.3.2 Digital Input Events

Code Function

Structure

0

PIN_CHANGE

A pin change event. The payload in-
cludes a snapshot of all configured pins
captured immediately after the change
was registered.

Payload:
e ul6 changed pins
e ul6 port snapshot

B 13.3.3 Digital Input Commands

Code Function Structure
0 READ Response:
Read the pins e ul6 pin states
1 ARM_ SINGLE Request:
Arm for a single event e ul6 pins to arm
2 ARM__AUTO Request:
Arm with automatic re-arming after e ul6 pins to arm
each event
3 DISARM Request:

Dis-arm selected pins

e ul6 pins to dis-arm

B 13.4 SIPO (Shift Register) Unit

The shift registers driver unit is designed for the loading of data into serial in, parallel out
(SIPO) shift registers, such as 74xx4094 or 74xx595. These are commonly used to control
segmented LED displays, LED user interfaces, etc.

A STPO shift register has the following digital pins:

82

Shift — SCK; shifts the data in the register by one bit

Data In — MOSI; serial data to load into the register

Data Out — output for daisy-chaining with other shift registers
Store — latches the current register data and shows it at the outputs

Clear — erases the latched data and clears the display

13.4. SIPO (Shift Register) Unit

This unit automatically handles both the Shift and Store signals, provides access to the
Clear output, and is capable of loading multiple shift registers in parallel (an arrangement
sometimes used instead of daisy-chaining). The polarity (active level) of all signals can be
configured.

It is, additionally, possible to set the data lines to arbitrary “idle” level(s) before sending
the Store pulse; this may be latched and used for some additional feature on the user
interface, such as a brightness control.

B 13.4.1 SIPO Configuration

[SIPO:display@9]

Shift pin & its active edge (1-rising,0-falling)
shift-pin=A1

shift-pol=1

Store pin & its active edge
store-pin=A0

store-pol=1

Clear pin & its active level
clear-pin=A2

clear-pol=0

Data port and pins
data-port=A

data-pins=3

B 13.4.2 SIPO Commands

The WRITE and CLEAR_ DIRECT commands are the only ones normally used. The
others provide manual control over all the output signals for debugging or testing.

Code Function Structure
0 WRITE Request:
Load the shift registers and leave the o ul6 trailing data (packed pins)
Data outputs in the “trailing data” e For each output (same size)
state before sending a Store pulse. — u8[] data to load
1 DIRECT_DATA Request:
Directly write to the Data pin(s) e ul6 values to write (packed pins)

2 DIRECT__CLEAR
Pulse the Clear pin

3 DIRECT__SHIFT
Pulse the Shift pin

83

13. Units Overview, Commands and Events Description

Code Function Structure

4 DIRECT_STORE
Pulse the Store pin

B 13.5 NeoPixel Unit

The NeoPixel unit implements the protocol needed to control a digital LED strip with
WS2812, WS2811, or compatible LED driver chips. The NeoPixel protocol (explained in
Section 7.5) is implemented in software, therefore it is available on any GPIO pin of the
module.

The color data can be loaded in five different formats: as packed bytes (3x8 bits color),
or as the little- or big-endian encoding of colors in a 32-bit format: 0x00RRGGBB or
0x00BBGGRR. The 32-bit format is convenient when the colors are already represented as
an array of 32-bit integers, e.g., extracted from a screen capture or an image.

B 13.5.1 NeoPixel Configuration

[NPX:neo@3]

Data pin

pin=A0

Number of pizels
pixels=32

B 13.5.2 NeoPixel Commands

Code Function Structure
0 CLEAR
Switch all LEDs off (sets them to black)
1 LOAD Request:
Load a sequence of R,G,B bytes e For each LEDs:
— u8 red
— u8 green
— u8 blue
4 LOAD_U32_ ZRGB Request:
Load 32-bit big-endian 0xRRGGBB e u32[] color data (big-endian)
(0,R,G,B)

84

13.6. SPI Unit

Code Function Structure

5 LOAD U32 ZBGR Request:
Load 32-bit big-endian 0xBBGGRR ¢ u32[] color data (big-endian)
(0,B,G,R)

6 LOAD U332 RGBZ Request:
Load 32-bit little-endian 0OxBBGGRR ¢ u32[] color data (little-endian)
(R,G,B,0)

7 LOAD_U32_BGRZ Request:
Load 32-bit little-endian 0OxXRRGGBB e u32[] color data (little-endian)
(B,G,R,0)

10 GET_LEN Response:
Get number of LEDs in the strip e ul6 number of LEDs

B 13.6 SPI Unit

The SPI unit provides access to one of the microcontroller’s SPI peripherals. The unit can
be configured to any of the hardware-supported speeds, clock polarity, and clock phase
settings. Explanation of those options, including diagrams, can be found in Section 7.2.

The unit handles up to 16 slave select (NSS) signals and supports message multi-cast
(addressing more than one slaves at once). Protection resistors should be used if a multi-
cast transaction is issued with MISO connected to prevent a short circuit between slaves
transmitting the opposite logical level.

The QUERY command of this unit, illustrated by Figure 13.2, is flexible enough to
support all types of SPI transactions: read-only, write-only, and read-write, with different
request and response lengths and paddings. The slave select signal is asserted during the
entire transaction.

Request
- .
(\Padding
MOSI X X X 0x00 | O0x00
MISO ? Y Y Y Y
Skip ~ \ _/
Response

Figure 13.2: SPI transaction using the QUERY command

B 13.6.1 SPI Configuration

[SPI:spi@5]
Peripheral number (SPIz)
device=1

85

13. Units Overview, Commands and Events Description

Pin mappings (SCK,MISO,MOSI)

SPI1: (0) A5,A6,A7 (1) B3,B4,B5
SPI2: (0) B13,B14,B15
remap=0

Prescaller: 2,4,8,...,256

prescaller=64

Clock polarity: 0,1 (clock idle level)
cpol=0

Clock phase: 0,1 (active edge, O-first, 1-second)
cpha=0

Transmit only, disable MISOU

tx-only=N

Bit order (LSB or MSB first)

first-bit=MSB

SS port name

port=A

SS pins (comma separated, supports ranges)
pins=0

B 13.6.2 SPI Commands

Code Function Structure
0 QUERY Request:
Exchange bytes with a slave device; see e u8 slave number 0-16
the diagram in Figure 13.2 e ul6 response padding

e ul6 response length

e u8[] bytes to write
Response:

e u8[] received bytes

1 MULTICAST Request:
Send a message to multiple slaves at e ul6 addressed slaves
once. The “addressed slaves” word uses e u8[] bytes to write
the packed pins format (Section 13.1.2).

B 13.7 12C unit

The I2C unit provides access to one of the microcontroller’s I2C peripherals. More on the

I2C bus can be found in Section 7.3.

The unit can be configured to use either of the three standard speeds (Standard, Fast
and Fast+) and supports both 10-bit and 7-bit addressing. 10-bit addresses can be used
in commands by setting their highest bit (0x8000), as a flag to the unit; the 7 or 10 least

significant bits will be used as the actual address.

86

13.7. PC Unit

B 13.7.1 12C Configuration

[I2C:i2c@4]

Peripheral number (I2Cz)
device=1

Pin mappings (SCL,SDA)

1I2C1: (0) B6,B7 (1) B8,B9
I2c2: (0) B10,B11 (1) B13,B14
remap=0

Speed: 1-Standard, 2-Fast, 3-Fast+
speed=1

Analog noise filter enable (Y,N)
analog-filter=Y

Digital nmoise filter bandwidth (0-15)
digital-filter=0

B 13.7.2 12C Commands

Code Function Structure
0 WRITE Request:
Perform a raw write transaction e ul6 slave address

e u8[] bytes to write

1 READ Request:
Perform a raw read transaction. e ul6 slave address
e ul6 number of read bytes
Response:
e u8[] received bytes

2 WRITE_ REG Request:
Write to a slave register. Sends the reg- o u16 slave address
ister number and the data in the same e u8 register number
transaction. Multiple registers can be o u8[] bytes to write
written at once if the slave supports
auto-increment.

3 READ_ REG Request:
Read from a slave register. Writes the e ul6 slave address
register number and issues a read trans- e u8 register number

action of the given length. Multiple reg- e u16 number of read bytes
isters can be read at once if the slave Response:
supports auto-increment. e u8[] received bytes

87

13. Units Overview, Commands and Events Description

B 13.8 USART Unit

The USART unit provides access to one of the microcontroller’s USART peripherals. See
Section 7.1 for more information about the interface.

Most USART parameters available in the hardware peripheral’s configuration registers
can be adjusted to match the application’s needs. The peripheral is capable of driving
RS-485 transceivers, using the Driver Enable (DE) output for switching between reception
and transmission.

The unit implements asynchronous reception and transmission with DMA and a circular
buffer (Figure 13.3). Received data is sent to the host in asynchronous events when a half
of the buffer is filled, or after a fixed timeout from the last received byte. The write access
is, likewise, implemented using a DMA buffer.

Write pointer

Half

Bytes received
since last report

Complete

Figure 13.3: Principle of DMA-based UART reception. Interrupt is generated in the half and
at the end of the buffer, at which point the write pointer wraps back to the beginning.

Bl 13.8.1 USART Configuration

[USART:ser@6]

Peripheral number (UARTxz 1-4)

device=1

Pin mappings (TX,RX,CK,CTS,RTS/DE)

USART1: (0) A9,A10,A8,A11,A12 (1) B6,B7,48,411,A12

USART2: (0) A2,A3,44,A0,A1 (1) A14,A15,44,40,A1

USART3: (0) B10,B11,B12,B13,B1/

USART4: (0) A0,A1,C12,B7,A15 (1) c10,C11,C12,B7,A15
remap=0

Baud rate in bps (eg. 9600)

baud-rate=115200

Parity type (NONE, ODD, EVEN)

parity=NONE

Number of stop bits (0.5, 1, 1.5, 2)

stop-bits=1

Bit order (LSB or MSB first)

first-bit=LSB

Word width (7,8,9) - including parity bit if used
word-width=8

88

13.8. USART Unit

Enabled lines (RX,TX,RXTX)

direction=RXTX

Hardware flow control (NONE, RTS, CTS, FULL)
hw-flow-control=NONE

Generate serial clock (Y,N)
clock-output=N

Clock polarity: 0,1

cpol=0

Clock phase: 0,1

cpha=0

Generate RS/85 Driver Enable signal (Y,N) - uses RTS pin
de-output=N

DE active level: 0,1

de-polarity=1

DE assert time (0-31)

de-assert-time=8

DE clear time (0-31)

de-clear-time=8

B 13.8.2 USART Events

Code Function Structure
0 DATA__RECEIVED Payload:
Data was received on the serial port. e u8[] received bytes

B 13.8.3 USART Commands

Code Function Structure

0 WRITE Request:
Add data to the transmit buffer. Send- ¢ u8[] bytes to write
ing is asynchronous, but the command
may wait for free space in the DMA
buffer.

1 WRITE_SYNC Request:
Add data to the transmit buffer and e u8[] bytes to write
wait for the transmission to complete.

89

13. Units Overview, Commands and Events Description

B 13.9 1-Wire Unit

The 1-Wire unit implements the Dallas Semiconductor’s 1-Wire protocol, most commonly
used to interface smart thermometers (DS18x20). The protocol is explained in Section 7.4.

This unit implements the ROM Search algorithm that is used to find the ROM codes of
all 1-Wire devices connected to the bus. The algorithm can find up to 32 devices in one
run; more devices can be found by issuing the SEARCH__CONTINUE command.

Devices are addressed using their ROM codes, unique 64-bit (8-byte) identifiers that
work as addresses. When only one device is connected, the value 0 may be used instead and
the addressing will be skipped. Its ROM code may be recovered using the READ ADDR
command or by the search algorithm.

B 13.9.1 1-Wire Configuration

[1WIRE:ow@7]

Data pin

pin=A0

Parasitic (bus-powered) mode
parasitic=N

B 13.9.2 1-Wire Commands

Code Function Structure
0 CHECK__PRESENCE Response:
Test if there are any devices attached e bool presence detected
to the bus.
1 SEARCH__ADDR Response:
Start the search algorithm. ¢ bool should continue
o u64[] ROM codes
2 SEARCH__ALARM Response:
Start the search algorithm, finding only e bool should continue
devices in an alarm state. e u64[] ROM codes
3 SEARCH__CONTINUE Response:
Continue a previously started search e bool should continue
e u64[] ROM codes
4 READ__ADDR Response:
Read a device address (single device e u64 ROM code
only)

90

13.10. Frequency Capture Unit

Code Function Structure
10 WRITE Request:
Write bytes to a device. e u64 ROM code
e u8[] bytes to write
11 READ Request:
Write a request and read response. e u64 ROM code

e ul6 read length

e bool verify checksum

e u8[] request bytes
Response:

o u8[] read bytes

20 POLL_FOR_1
Wait for a READY status, used by
DS18x20. Not available in parasitic
mode. Responds with SUCCESS after
all devices are ready.

B 13.10 Frequency Capture Unit

The frequency capture unit implements both the frequency measurement methods explained
in Section 8.1: direct and reciprocal.

The unit has several operational modes: idle, reciprocal continuous, reciprocal burst,
direct continuous, direct burst, free counting, and single pulse. Burst mode is an on-demand
measurement with optional averaging. Continuous mode does not support averaging, but
the latest measurement can be read at any time without a delay.

B 13.10.1 Value Conversion Formulas

Several of the features implemented in this unit would require floating point arithmetic
to provide the measured value in the desired units (Hz, seconds). That is not available in
Arm Cortex-M, only as a software implementation. The calculation is left to the client in
order to save Flash space that would be otherwise used by the arithmetic functions. This
arrangement also avoids rounding errors and a possible loss of precision.

B Reciprocal (Indirect) Measurement
Period (in seconds) is computed as:

eriod_ sum
T b _

= 13.1
fcore,MHz -106 - n_ periods ()

The frequency is obtained by simply inverting it:

91

13. Units Overview, Commands and Events Description

f=1"1 (13.2)

The average duty cycle is computed as the ratio of the sum of active-level pulses and
the sum of all periods:

ontime sum

average_duty = (13.3)

period__sum

Il Direct Measurement

The frequency can be derived from the pulse count and measurement time using its definition
(tms is measurement time in milliseconds):

Fe 1000 - count - prescaller (13.4)

th

B 13.10.2 Frequency Capture Configuration

[FCAP: j@10]

Signal input pin - one of:
Full support: A0, A5, A1S5
Indirect only: A1, B3
pin=A0

Active level or edge (0-low, falling; 1-high,rising)
active-level=1

Input filtering (0-15)

input-filter=0

Pulse counter pre-divider (1,2,4,8)

direct-presc=1

Pulse counting interval (ms)

direct-time=1000

Mode on startup: N-none, I-indirect, D-direct, F-free count
initial-mode=N

B 13.10.3 Frequency Capture Commands

Some commands include optional parameter setting. Using 0 in the field keeps the previous
value. Those fields are marked with *.

92

13.10. Frequency Capture Unit

Code Function Structure
0 STOP
Stop all measurements, go idle
1 INDIRECT__CONT__START
Start a repeated reciprocal measure-
ment
2 INDIRECT_ BUTST_START Request:
Start a burst of reciprocal measure- e ul6 number of periods
ments Response:
e ul6 core speed (MHz)
e ul6 number of periods
o u64 sum of all periods (ticks)
e ul6 sum of on-times (ticks)
3 DIRECT CONT_ START Request:
Start a repeated direct measurement e ul6 *measurement time
o u8 *prescaller (1, 2, 4, 8)
4 DIRECT_BURST__START Request:
Start a single direct measurement. e ul6 *measurement time (ms)
Longer capture time may help increase o u8 *prescaller (1, 2, 4, 8)
accuracy for stable signals. Response:
e u8 prescaller
e ul6 measurement time (ms)
e u32 pulse count
5 FREECOUNT__START Request:
Clear and start the pulse counter o u8 *prescaller (1, 2, 4, 8)
6 MEASURE_SINGLE__ PULSE Response:
Measure a single pulse of the active level. o 116 core speed (MHz)
Waits for a rising edge. o u32 pulse length (ticks)
7 FREECOUNT__CLEAR Response:
Read and clear the pulse counter. e u32 previous counter value
10 INDIRECT_CONT_READ Response:
Read the latest value from the continu- e ul6 core speed (MHz)
ous reciprocal measurement, if running. o u32 period length (ticks)
o u32 on-time (ticks)
11 DIRECT CONT_READ Response:

Read the latest value from the continu-
ous direct measurement, if running.

e u8 prescaller
e ul6 measurement time (ms)
e 132 pulse count

93

13. Units Overview, Commands and Events Description

Code Function Structure
12 FREECOUNT__READ Response:
Read the pulse counter value e 132 pulse count
20 SET_POLARITY Response:
Set pulse polarity (active level) e bool polarity
21 SET_PRESCALLER Response:
Set prescaller for the direct mode o u8 prescaller (1, 2, 4, 8)
22 SET_ INPUT_ FILTER Response:

Set input filtering (a hardware feature o u8 filtering factor (0-15, 0=off)
designed to ignore glitches)

23 SET DIR_MSEC Response:

Set direct measurement time e ul6 measurement time (ms)

30 RESTORE__DEFAULTS
Restore all run-time adjustable param-
eters to their configured default values

B 13.11 ADC unit

The analog/digital converter unit is one of the most complicated and powerful units
implemented in the project.

The unit can measure the voltage on an input pin, either as its immediate value, or
averaged with exponential forgetting. The smoothing formula is (y—averaged output,
t-sample number, k—smoothing factor, u—raw measured value):

ylt] = (1= k) - ylt — 1] + k- ult] (13.5)

Isochronous sampling is available as well: it is possible to capture a fixed-length block
of data on demand, or as a response to a triggering condition on any of the enabled input
pins. The ADC must continuously sample the inputs to make the averaging and level
based triggering possible, which is implemented using DMA; as a consequence, a pre-trigger
buffer is available that can be read together with the block of samples following a trigger
(Figure 13.4). The ADC unit can also be switched to a continuous streaming mode, a block
capture which continues indefinitely, until the host decides to stop the stream.

It is possible to activate any number of the 16 analog inputs of the ADC peripheral
simultaneously, together with the internal input channels. The maximum continuous
sampling frequency, which reaches 70 ksps with one channel, lowers with an increasing
number of enabled channels, as the amount of data to transfer host increases. Those high
speeds are achievable in shorter block captures, taking advantage of the (configurable) data
buffer. An ongoing capture may be terminated by the unit after the buffer is exhausted.

94

13.11. ADC Unit

Write
Half pointer Complete
Waiting for trigger
(pretrigger buffer) newest oldest
Triggered, capturing ¢

Figure 13.4: Principle of DMA-based ADC sampling. The buffer is continually filled with new
samples; when the triggering condition is hit, the historical records from the buffer are sent as
a pre-trigger buffer, and a block capture begins. The following samples are sent to the host
when either half of the buffer is filled, or the required number of samples have been sent. The
sampling never stops, ensuring a pre-trigger buffer is always ready.

B 13.11.1 ADC Configuration

[ADC:adc@8]

Enabled channels, comma separated

0 1 2 3 4 &6 6 7 8 9 10 11 12 13 14 15 16 17
A0 A1 A2 A3 A4 A5 A6 A7 BO Bi CO C1 C2 C3 C4 C5 Tsens Vref
channels=16

Sampling time (0-7)
sample_time=2

Sampling frequency (Hz)
frequency=1000

Sample buffer stize

- shared by all enabled channels

- defines the mazimum pre-trigger size (divide by # of channels)
- captured data is sent in half-buffer chunks

- buffer overrun aborts the data capture

buffer_size=256

Enable continuous sampling with averaging

Caution: This can cause DAC output glitches

averaging=Y

Exponential averaging coefficient (permil, range 0-1000 ~ 0.000-1.000)
- used formula: y[t]=(1-k)*y[t-1]+k*u[t]

- not available when a capture s Tunning

avg_factor=500

95

13. Units Overview, Commands and Events Description

B 13.11.2 ADC Events

Code Function Structure

50 TRIGGERED Payload:
The first event generated when a trig- e u32 pre-trigger length
gering condition occurs. The payload o u8 triggering edge (1-falling,
includes pre-trigger and the transac- 2-rising, 3—forced)
tion continues with a sequence of CAP- ¢ u8 stream serial number
TURE events sharing the same frame e ul6[] pre-trigger data
ID. The serial number is incremented
with each stream chunk and can be used
to detect lost data frames.

51 CAPTURE_DATA Payload:
A chunk of sampled data in a stream, e u8 stream serial number
block, or a triggered capture. More e ul6[] sample data
data will follow.

52 CAPTURE__ END Payload:

Indicates the end of a multi-part cap-
ture. The payload may be empty if
there is no more data to send (e.g., a
stream had to be unexpectedly closed).

e u8 stream serial number
e ul6[] sample data

B 13.11.3 ADC Commands

Code Function Structure

0 READ_RAW Response:
Get the last raw sample from enabled e ul6[] raw values 0-4095
channels.

1 READ_SMOOTHED Response:
Get the averaged values from enabled e float[] smoothed values 0-4095
channels. Not available for high sample
rates and when disabled.

2 READ_CAL_CONSTANTS Response:

Read factory calibration constants from
the MCU’s ROM. These are used to
calculate real voltage or temperature
from the ADC output word. The for-
mulas can be found in Section 13.9 of
the STM32F0 reference manual [42].

e ul6 VREFINT CAL (word)

« u16 VREFINT CAL VDD (mV)
o ule TS_CALI1 (word)
e ul6 TS CAL2 (word)
o ule TS_CAL1_T (°C)

. ui6 TS_CAL2 T (°C)

« ul6 TS CAL VDD (mV)

96

13.11. ADC Unit

Code Function Structure
10 GET_ENABLED_CHANNELS Response:
Get numbers of all enabled channels e u8[] enabled channel numbers
(0-based)
11 GET_SAMPLE_RATE Response:
Get the current sample rate (in Hz) e u32 requested sample rate
e float achieved sample rate
20 SETUP_ TRIGGER Request:
Configure the triggering level and other e u8 source channel number
trigger parameters. This command e ul6 triggering level
does not arm the trigger. o u8 active edge (1-falling, 2-rising,
3-any)
e u32 pre-trigger sample count
e u32 post-trigger sample count
e ul6 hold-off time (ms)
e bool auto re-arm
21 ARM Request:
Arm the trigger for capture. e u8 auto re-arm (0, 1, 255-no
change)
22 DISARM
Dis-arm the trigger.
23 ABORT
Abort any ongoing capture and dis-arm
the trigger.
24 FORCE_TRIGGER
Manually trip the trigger, as if the
threshold level was reached.
25 BLOCK_CAPTURE Request:
Capture a fixed-length sequence of sam- e 132 number of samples
ples.
26 STREAM_START
Start a continuous stream of samples
27 STREAM_ STOP
Stop an ongoing stream
28 SET_SMOOTHING_FACTOR Request:
Set the smoothing factor (x10%). 1000 e« u16 smoothing factor 0-1000
corresponds to k = 1.
29 SET SAMPLE RATE Request:

Set the sampling frequency.

e u32 frequency in Hz

97

13. Units Overview, Commands and Events Description

Code Function Structure

30 ENABLE_CHANNELS Request:
Select channels to sample. The channels e u32 bit map of channels to enable
must be configured in the unit settings.

31 SET_SAMPLE_TIME Request:
Set the sample time of the ADC’s sam- e u8 sample time 0-7
ple&hold circuit.

B 13.12 DAC unit

The digital/analog unit works with the two-channel DAC hardware peripheral. It can be
used in two modes: DC output, and waveform generation.

The waveform mode implements direct digital synthesis (explained in Section 8.3.2) of
a sine, rectangle, sawtooth or triangle wave. The generated frequency can be set with
a sub-hertz precision up to the lower tens of kHz. The two outputs can use a different
waveform shape, can be synchronized, and their phase offset and frequency are dynamically
adjustable.

B 13.12.1 DAC Configuration

[DAC:dac@13]

Enabled channels (1:44, 2:45)
chl_enable=Y

ch2 _enable=Y

Enable output buffer
chl_buff=Y

ch2_buff=Y

Superimposed noise type (NONE,WHITE,TRIANGLE) and nbr. of bits (1-12)
chl_noise=NONE

chl _noise-level=3
ch2_noise=NONE

ch2 noise-level=3

B 13.12.2 DAC Commands

Channels are specified in all commands as a bit map:

e 0x01 — channel 1
e 0x02 — channel 2
¢ 0x03 — both channels affected at once

98

13.12. DAC Unit

Code Function Structure
0 WAVE_ DC Request:
Set a DC level, disable DDS for the e u8 channels
channel o ul6 level (0-4095)
1 WAVE_ SINE Request:
Start a sine waveform e u8 channels
2 WAVE__TRIANGLE Request:
Start a symmetrical triangle waveform e u8 channels
3 WAVE SAWTOOTH_UP Request:
Start a rising sawtooth waveform e u8 channels
4 WAVE_SAWTOOTH_DOWN Request:
Start a dalling sawtooth waveform e u8 channels
5 WAVE_RECTANGLE Request:
Start a rectangle waveform e u8 channels
o ul6 on-time (0-8191)
e ul6 high level (0-4095)
e ul6 low level (0-4095)
10 SYNC
Synchronize the two channels. The
phase accumulator is reset to zero.
20 SET_FREQUENCY Request:
Set the channel frequency e u8 channels
e float frequency
21 SET_ PHASE Request:
Set a channel’s phase. It is recom- e u8 channels
mended to only set the phase of one o ul6 phase (0-8191)
channel, leaving the other at 0°.
22 SET_DITHER Request:

Control the dithering function of the
DAC block. A high noise amplitude
can cause an overflow to the other end
of the output range due to a bug in the
DAC peripheral. Use value 255 to leave
the parameter unchanged.

u8 channels

u8 noise type (0—none, 1-white,
2—-triangle)

u8 number of noise bits (1-12)

99

13. Units Overview, Commands and Events Description

B 13.13 PWM unit

The PWM unit uses a timer/counter to generate a PWM (pulse train) signal. There are
four outputs with a common frequency and independent duty cycles. Each channel can
be individually enabled or disabled. This unit is intended for applications such as light

dimming, heater regulation, or the control of H-bridges.

B 13.13.1 PWM Configuration

[PWMDIM: pwm@12]

Default pulse frequency (Hz)
frequency=1000

Pin mapping - O=disabled

Channell - 1:PA6, 2:PB4, 3:PC6
chl_pin=1

Channel2 - 1:PA7, 2:PB5, 3:PC7
ch2_pin=0

Channel3 - 1:PB0, 2:PC8
ch3_pin=0

Channel4 - 1:PB1, 2:PC9
ch4_pin=0

B 13.13.2 PWM Commands

Code Function

Structure

0 SET_FREQUENCY
Set the PWM frequency

1 SET_DUTY
Set the duty cycle of one or more chan-

nels

2 STOP
Stop the hardware timer. Outputs enter
low level.

3 START

Start the hardware timer.

Request:
e u32 frequency in Hz

Request:
e Repeat 14 times:
— u8 channel number 0-3
— ul6 duty cycle 0-1000

100

13.14. Touch Sense Unit

B 13.14 Touch Sense Unit

The touch sensing unit provides an access to the T'SC peripheral, explained in Section 8.4.
The unit configures the TSC and reads the output values of each enabled touch pad.
Additionally, a threshold-based digital input function is implemented to make the emulation
of touch buttons easier. The hysteresis and debounce time can be configured in the
configuration file or set using a command. The threshold of individual pads must be set
using a command.

B 13.14.1 Touch Sense Configuration

[TOUCH: touch@11]

Pulse generator clock prescaller (1,2,4,...,128)
pg-clock-prediv=32

Sense pad charging time (1-16)

charge-time=2

Charge transfer time (1-16)

drain-time=2

Measurement timeout (1-7)

sense-timeout=7

Spread spectrum maz deviation (0-128,0=off)
ss—deviation=0

Spreading clock prescaller (1,2)
ss—clock-prediv=1

Optimize for interlaced pads (individual sampling with others floating)
interlaced-pads=N

Button mode debounce (ms) and release hysteresis (lsb)
btn-debounce=20
btn-hysteresis=10

Each used group must have 1 sampling capacitor and 1-3 channels.
Channels are numbered 1,2,3,4

Groupl - 1:40, 2:41, 3:42, 4:43
gl_cap=

gl_ch=

Group2 - 1:44, 2:45, 3:46, 4:47
g2_cap=

g2_ch=

...

101

13. Units Overview, Commands and Events Description

B 13.14.2 Touch Sense Events

Code Function

Structure

0

BUTTON__CHANGE
The binary state of some of the capac-
itive pads with button mode enabled

Payload:
e u32 binary state of all channels
o u32 changed / trigger-generating

changed. channels
B 13.14.3 Touch Sense Commands
Code Function Structure

0 READ Request:
Read the raw touch pad values (lower o ul6[] raw values
indicates higher capacitance). Values
are ordered by group and channel.

1 SET_BIN__THR Request:
Set the button mode thresholds for all e ul6[] thresholds
channels. Value 0 disables the button
mode for a channel.

2 DISABLE__ALL_REPORTS
Set thresholds to 0, disabling the button
mode for all pads.

3 SET_DEBOUNCE_ TIME Request:
Set the button mode debounce time e ul6 debounce time (ms)
(used for all pads with button mode
enabled).

4 SET_HYSTERESIS Request:

Set the button mode hysteresis.

e ul6 hystheresis

102

Chapter 14

Wireless Interface

Four methods of a wireless connection have been considered: Bluetooth (perhaps with the
Texas Instruments CC2541), WiFi with the Espressif ESP8266, a 868 MHz long range radio
link with the Semtech SX1276, and a 2.4 GHz radio link with the nRF24L01+. Bluetooth
was dismissed early for its complexity, and the ESP8266 for its high power consumption,
although both solutions might be viable for certain applications and with more development
time.

Figure 14.1: Test setup with a GEX prototype controlling two nRF24L01+ modules

. 14.1 Modulations Overview

A brief overview of the different signal modulation techniques is presented here to aid the
reader with understanding of Table 14.1 and the rest of the chapter.

B 14.1.1 On-Off Keying (OOK)

In on-off keying (OOK), the carrier generator is switched on and off to transmit ones and
Zeros.

103

14. Wireless Interface

B 14.1.2 Frequency Shift Keying (FSK)

Frequency-shift keying (FSK) uses a change of the carrier frequency to transmit data.
The simplest form of FSK is binary frequency-shift keying (BFSK), which uses a pair of
alternating frequencies to transmit ones and zeros.

B 14.1.3 Gaussian Frequency Shift Keying (GFSK)

Gaussian frequency-shift keying (GFSK) is an improvement over basic FSK which does not
switch between the different frequencies instantaneously, but uses a Gaussian filter to make
the changes less abrupt, which reduces the side-band interference otherwise generated by
the sharp edges. This scheme can be imagined as sending the binary waveform through a
Gaussian filter and then modulating a voltage-controlled oscillator (VCO) with its output,
rather than changing the VCO’s control voltage discretely. GFSK is used in the Bluetooth
standard.

B 14.1.4 Minimum-Shift Keying (MSK)

Minimum-shift keying (MSK) is another FSK-based modulation scheme. In MSK, the
frequencies representing different symbols are chosen such that there are no sharp changes
in the phase of the output waveform, the modulation is phase-coherent. This is another
way to reduce side-band interference.

B 14.1.5 Gaussian Minimum-Shift Keying (GMSK)

Gaussian minimum-shift keying (GMSK) is a variant of MSK which uses a Gaussian filter
to shape the digital signal before sending it to the oscillator. The principle is similar to
GFSK, and it is a yet another way to reduce side-band interference and increase spectral
efficiency.

B 14.1.6 LoRa Modulation

LoRa uses a direct sequence frequency hopping spread spectrum modulation scheme and
can achieve very long range transmission. A higher-level specification defines how the
devices using LoRa should behave in a large area network, though the modulation may be
used for point-to-point connections as well.

LoRa is a proprietary technology developed by Semtech; it is free to use, but is available
only with transceiver 1Cs produced by the company.

B 14.2 Comparing SX1276 and nRF24L01+

The SX1276and nRF24L014 transceivers have both been tested using the first GEX
prototype, proving its usefulness as a hardware development tool, they proved capable of

104

14.3. Wireless Link with the nRF24L01+

fulfilling the requirements of the GEX radio link use-case. We compared them in Table 14.1
using data from their datasheets [55, 56]. It is apparent, after inspecting the table, that
each has its strengths and weaknesses and the choice depends on the particular application’s
needs.

Table 14.1: Comparison of the SX1276 and nRF24L01+ wireless transceivers, using data from
their datasheets (price in USD from DigiKey in a 10 pcs. quantity, recorded on May 6th 2018)

Parameter SX1276 nRF24L01+
Connection SPI (4 pins) + up to 6 IRQ SPI (4 pins), CE, IRQ
Frequency band 868 MHz or 433 MHz 2.4GHz

Data rate up to 300 kbps 250-2000 kbps
Modulation (G)FSK, (G)MSK, OOK, LoRa GFSK

Range (est.) over 10 km up to 1km

Consumption Rx 10.8-12mA 12.6-13.5mA
Consumption Tx 20-120mA 7-11.3mA

Idle power (max) 1pA sleep, 2mA stand-by 0.9 uA sleep, 320 A stand-by
Max packet size 300 bytes 32 bytes

Software reset NRESET pin not available

Extra LoRa FHSS, packet engine ShockBurst protocol engine
Price $7.3 $1.6

The SX1276 supports additional modulation modes, including the proprietary LoRa
scheme that can be received at long distances. The power consumption required to achieve
this long-range communication makes it impractical for continuous operation on battery or
solar power.

The nRF24L01+ provides higher data rates at short distances. Its power consumption
is comparable or lower than that of the SX1276. It lacks a dedicated reset pin, but that
can be worked around using an external transistor to momentarily disconnect it from the
power supply.

Both devices implement some form of a packet engine with error checking; that of
the nRF24L01+, called ShockBurst, is more advanced, as it implements acknowledgment
responses and automatic re-transmission, leading to potentially more robust communication
without additional overhead in the control software.

B 14.3 Wireless Link with the nRF24L01+

The nRF24L01+ was selected to be integrated into GEX thanks to its inclusion of the
ShockBurst engine, higher possible data rates and significantly lower price. The SX1276,

105

14. Wireless Interface

nonetheless, remains an interesting option, should the need for a long range communication
arise.

A pair of these radio modules can form a bidirectional data connection, functionally
replacing USB or UART as a communication interface. However, we need to connect
the second module to the PC to control GEX through the radio link. A separate USB
device, a wireless gateway, was developed for this purpose; its hardware will be presented
in Section 15.5.

Bl 14.3.1 The Wireless Gateway

device, much like the GEX modules themselves (here
called nodes) when connected over USB. However, the
standard GEX communication protocol cannot be used
directly, as the gateway itself needs to be managed

The gateway presents itself to the host as a CDC/ACM [User application }

GEX library
*

Binary stream (TinyFrame)

through the interface, and it can connect to more than / Wirelegs gateway \
one GEX module at once, necessitating an addressing Host___ adapter \........
scheme. This problem could be solved by adding a Gateway protocol (USB)

side channel, additional USB endpoints, to interact
with the gateway itself; that option was not explored

ol s . k Wireless gateway
further, but it is clear that it would compromise our

ability to use the simple virtual COM port USB driver. } RF link (ShockBurst)
The gateway has a 4-byte network ID, a number | n;F | n‘F;F | n;F |

derived from the MCU’s unique ID number. The net-

work ID must be entered into the system settings file GEX GEX GEX

of all nodes that wish to communicate with the gate-
way. Additionally, each module is assigned a 1-byte
number serving as its address in the network. These
addresses are loaded into the gateway by the user application, and are used to configure
the nRF24L01+ to listen to messages from the corresponding nodes. The nRF24L01+ uses
5-byte addressing; the full node addresses are composed of the network ID and the one
additional address byte.

Figure 14.2: Wireless connection
block diagram

B 14.3.2 The Gateway Protocol

The gateway protocol, when used to communicate with a node, encapsulates the raw binary
data sent to or from connected nodes; the wrapped TinyFrame protocol remains unchanged.

All messages sent to or from the gateway are a multiple of 64 bytes long, padded with
zeros if shorter. A message starts with a control byte determining its type, as summarized
in the following table, listing the structure of all supported messages.

106

14.3. Wireless Link with the nRF24L01+

First byte Function Structure

‘' (114) RESTART
Restart the gateway, disconnecting all
nodes. This is functionally equivalent to
re-plugging it to the USB port.

‘i’ (105) GET_ NET 1D Response:
Read the unique 4-byte network ID. This e 0x01
command has no side effects and may e u8[4] network ID
be used as “ping” to verify the USB

connection.
‘n’ (110) ADD__NODES Request:
Configure the gateway to listen for mes- ¢ u8 count

sages from the given nodes. Nodes may e u8[] node addresses
be removed using the RESTART com-

mand.
‘m’ (109) SEND_ MSG Request:
Send a binary message to one of the con- ¢ u8 node address

nected nodes. The message may span e ul6 length
multiple 64-byte frames; the subsequent o u8 checksum (inverted

frames will contain only the payload XOR of all payload bytes)
bytes, or zero padding at the end of the e u8[] payload
last one.

0x02 INCOMING_MSG Payload:

A message was received from one of the o u8 node address
configured nodes. This is an event frame e u8 message length
sent by the gateway to the host. e u8[] payload

B 14.3.3 Gateway Initialization Procedure

A host program connecting to a node or nodes through the gateway should follow the
following procedure to initialize and configure the gateway:

1. Send the “GET_NET_ID” command to test if the gateway is connected (and obtain
its network ID as a side effect)

2. Restart the gateway using the “RESTART” command to clean any possible previous
configuration; this is not needed when the gateway was restarted or freshly connected
to the USB port.

3. Add the node address(es) using the “ADD__NODES” command.

4. Ping the connected node(s) through the GEX communication protocol to test the
connection. Note that GEX will not use the radio module if USB is connected and
enumerated, as it has lower priority.

107

108

Chapter 15

Hardware Realization

B 15.1 GEX on a STM32 Discovery Board

It has been proposed earlier in the text that STM32 Nucleo and Discovery development
boards might serve as the hardware platform for this project. Indeed, a Discovery board
with the STM32F072 was used to develop a major part of the GEX firmware, and the
firmware remains compatible with it. This inexpensive board may be used to try GEX
without the custom hardware.

B 15.1.1 Discovery STM32F072 Configuration and Pin Mapping

The Discovery board is fitted with four LEDs on GPIO pins PC6 through PC9, in a compass
arrangement. The “north” LED, PC6, is used as the GEX status indicator. The “User”
button, connected to PAO, is mapped as the GEX Lock button, controlling the settings
storage.

We advise the reader, as a potential user of the board, to review its schematic diagram
(found in the documentation [57]) and ensure the solder-jumpers on the back side are
configured correctly:

e Jumpers SB20 and SB23 must be closed to enable the User USB connector.

e Jumper SB17 must be open and SB19 closed to use the 8 MHz clock signal provided by
the on-board ST-Link programmer; the internal USB-synchronized 48 MHz oscillator
will be used if the clock signal is not provided (SB19 open).

e Jumpers SB27 through SB32 should be closed to connect the GPIO pins normally
dedicated to the touch sensing strip to the board’s header.

Capacitors C26, C27, and C28 are sampling capacitors for the TSC. There are, unfortu-
nately, no jumpers available to disconnect them, and they interfere in high-speed signals on
the used pins (PA3, PA7, and PB1). The only solution, when those pins are needed for
another purpose, is to desolder the capacitors.

An accelerometer IC L3GD20 is fitted on the board, attached to SPI2 on pins PB13
(SCK), PB14 (MISO), and PB15 (MOSI), with NSS on pin PC0, and pins PC1 and PC2
used for interrupt flags. This chip cannot be disconnected or disabled and it is difficult to
remove; care must be taken to avoid its interference on the used pins.

109

15. Hardware Realization

B 15.2 GEX Hub

GEX Hub was the first custom PCB designed for GEX. It uses the same microcontroller as
the Discovery board, thus the firmware modifications needed to make it work with this new
platform were minimal. The schematic diagram is attached in Appendix A.

The Hub board provides access to all the GPIO pins' through three flat-cable connectors
(IDC), one for each port; they also contain a ground and power supply connection to make
the attachment of external boards or a breadboard easier, requiring just one cable. The
use of flat cables, however, is not mandatory—the flat cable connectors are based on the
standard 2.54 mm-pitch pin headers, allowing the user to use widely available “jumper
wires”.

(a) : Revision 1 (b) : Revision 2

Figure 15.1: Two revisions of the GEX Hub module, rev. 2 shown with the boot jumper and
one flat cable.

B 15.2.1 GEX Hub Errata

The first revision of the Hub board (Figure 15.1a) proved functional and helped us validate
the power supply design and test the firmware, but contained one layout error that had to
be manually fixed—the boot jumper and the programming header footprints, on the left
side of the board, had too fine pitch and could not be populated.

An updated revision 2 of the board (Figure 15.1b), manufactured together with the
GEX Zero PCBs (Section 15.3), removes the two problematic footprints altogether; a
reorganization in the GPIO connectors allowed them to be moved together with the other
pins.

The Boot jumper was meant to be closed during normal operation, to avoid it getting
lost. Since revision 2 moved the boot pin into the top connector, this had to be changed; the
jumper logic was inverted by changing its pull-up resistor to a pull-down. The bootloader
is now activated by inserting a jumper into the connector, shorting the Boot pin (labeled
“B”) to the adjacent 3.3V pin.

1With the exception of pins used by USB and the Lock button.

110

15.3. GEX Zero

A restart is required, in all cases, for the boot jumper changes to take effect. Revision 2
adds a flat reset button on the back side of the board for this purpose, making the firmware
update process more straightforward.

| C’U' ! | - i — - ‘:..
loooojoooojoooojoooclooon
2’00 0/0000/0000/0000|00Q0 0|

Figure 15.2: Comparison of Raspberry Pi Zero (top) with GEZ Zero (bottom), before soldering
the header, buttons, and the wireless module.

B 15.3 GEX Zero

Our desire to re-use the form factor of the Raspberry Pi (RPi) Zero to exploit the existing
accessory market has been mentioned already in Section 2.5. It was brought to fruition
with GEX Zero, the second realized GEX prototype (Figure 15.3). Its design involved
several challenges given by constraints imposed by this form factor:

o It had to be a one-sided board, with no components on the bottom; this is needed for
acrylic cases which sit flatly against the PCB, with a cut-out for the pin header.

e Buttons and the USB connector had to exactly align with connectors on the RPi Zero
to fit the openings in its cases.

e The board size was fixed, and rather small; we used only two layers to save production
cost, but this proved a significant challenge when routing connections to the pin
header.

111

15. Hardware Realization

Figure 15.3: GEX Zero in the official Raspberry Pi Zero case, and an aftermarket acrylic case.
The acrylic case is a better choice, as the button and the side connector are easier accessible,
and the pin-out diagram on the back side of the board can be read without removing it.

¢ To make use of the Raspberry Pi add-on boards, called HATs or pHATS, a particular
organization of the pin header was required. We’ll discuss this in more detail below.

B 15.3.1 Pin Assignment

Like our STM32 microcontroller, the Broadcom processor on the RPi multiplexes its GPIO
pins with alternate functions, and, likewise, each function is available only on a small
selection of pins. The usual alternate function assignments of the RPi GPIO header can be
found in [58] and [59].

The GEX Zero pin header’s alternate functions had to match those on the RPi Zero
header, so that the existing add-on boards can be used without modifications. By inspecting
the alternate function tables in the STM32F072 datasheet [60], we found a layout that
fulfills this requirement almost perfectly. The final assignment is shown in Table 15.1, and
the full schematic diagram is attached in Appendix B.

112

15.4. GEX Zero Errata

Hold BOOT during RESET for DFU

v e - B :
NN i F "3 T
» O N ™
R 2 X .
e QO o heie- NG QA G
N N9 & O 5 O 0NN 0 NAo
LT TELL L P &
11 13 15[17 19 21 23|25 27 29 2133 35 37 39

10 12 14 16]18.20 22 2426 28 30 32|34 36 38 40
By @ Ry Ry @y Ry Ry By By Q. By § Ry
0 7, %0 Wy Yo V5 N Yo o Yo Yo Y > N Ve % %,

e RN
’-)—e ‘P+0 :,'\:a 1o %%

GEX is a project by Ondfej Hruska ._PA9|GND "= #
FEE, CTU in Prague, Dpt. of Measurement DAC PA13|PA14 o o
www.ondrovo.com : ")

C e ST N S S AT N N N YE R e !\I'\?e'*'?f

a4 8aadalaany

Jumper - 3Vreg ¢
disable (ext. 3V)

-

9
Aol 2 2|0 AP

i

Figure 15.4: Pin assignment diagram on the back side of GEX Zero

GPIO ports A and B are fully exposed in the header, with the exception of pins PA11
and PA12 that are routed to the USB connector. The remaining positions were filled pith
pins from port C. The omitted “ID I?C” port on pins 27 and 28 is used by the RPi Zero to
read configuration from an EEPROM chip on some add-on boards. As this is the only use
of the I?C port, its lack is not a big limitation.

. 15.4 GEX Zero Errata

Unfortunately, neither the GEX Zero PCB was flawless in the first revision. The errors are

minor and will not interfere much in the usage of the module. Nonetheless, they should be
corrected in the next revision:

o The I?C pull-up resistor R8 is connected to PA8 instead of PB7. This can be fixed by
cutting the trace near the GPIO header and rewiring it, or using an external 1.8 k()
pull-up resistor on PB7, when the I?C connection is required.

e Pins PB14 and PB15 are swapped in the GPIO header, making the SPI port incom-
patible with add-on boards using this interface. Luckily, there is another SPI port on
the header, which is routed correctly, somewhat mitigating this mistake.

B 15.5 Wireless Gateway

The wireless gateway was designed as a “USB dongle”, using the USB type A connector
(Figure 15.5). It is fitted with an STM32F103 microcontroller, selected for its low cost
and availability in small packages (in this case LQFP48)2. The nRF24L01+ module is

2Ironically, the STM32F103 is more powerful than the MCU used in GEX Zero and GEX Hub. Porting
GEX to this platform is planned for future development.

113

15. Hardware Realization

partly sticking outside the board outline, allowing the PCB to be smaller (and thus cheaper
to manufacture), while reducing interference between components and copper plating on
the board and the antenna. The schematic diagram of the wireless gateway is attached in
Appendix C.

Beyond the use with GEX, the gateway is a versatile tool which could be programmed
with a different firmware and serve other purposes, e.g., as a wireless connection between
two computers, to scan the radio spectrum for interference in order to find a clear channel,
or to communicate with other devices that use the nRF24L01+ transceiver. The chosen
microcontroller, unfortunately, does not include a USB bootloader, so a SWD programmer
is required to change the firmware; SWD is routed to the pin header next to the wireless
module.

Figure 15.5: The wireless gateway (top and bottom side)

114

15.5. Wireless Gateway

Table 15.1: Comparison of the RPi Zero and GEX Zero GPIO header pin assignments. Names
in parentheses represent STM32F072 alternate functions (e.g., MISO1 is MISO of the first
SPI peripheral). “x” marks pins without important alternate functions that could be assigned
arbitrarily in the GEX Zero header. All power pins are identical in both headers.

Pin RPi GEX Zero Pin RPi GEX Zero
1 3.3V - 2 5V -

3 I?C SDA PB7 (SDA1) |4 5V -~

5 I?C SCL PB6 (SCL1) | 6 GND -

7 * PAS (MCO) | 8 UART TX PB10 (TX3)
9 GND — 10 UART RX PB11 (RX3)
11 UART RTS PB1 (RTS3) | 12 PWM PBS

13 * PA10 14 GND -

15 s PB9 16 % PAO (FCAP)
17 3.3V - 18 * PA1

19 SPI MOSI PB5 (MOSI1) | 20 GND -

21 SPI MISO PB4 (MISO1) | 22 % PA2 (TX2)
23 SPI SCK PB3 (SCK1) | 24 % PA3 (RX2)
25 GND - 26 % PA4 (DAC;)
27 ID I’C SDA PB2 28 ID I?C SCL. PA5 (DAC,)
29 s PC10 (TX4) | 30 GND -

31 s PC11 (RX4) | 32 PWM PA7

33 PWM PBO 34 GND -

35 SPI MISO PB14 (MISO2) | 36 * PA6 (CTS3)
37 * PB12 38 SPI MOSI PB15 (MOSI2)
39 GND — 40 SPI SCK PB13 (SCK2)

115

116

Chapter 16

Client Software

With the communication protocol clearly defined in Chapters 12 and 13, and Chapter 14
for the wireless gateway, the implementation of client libraries is relatively straightforward.
Two have been developed as a proof-of-concept, in languages C and Python.

B 16.1 General Library Structure

The structure of a GEX client library is in all cases similar:

e USB or serial port access

This is the only platform-dependent part of the library. Unix-based systems provide a
standardized POSIX API to configure the serial port. A raw access to USB endpoints
is possible using the libUSB C library. Access to the serial port or USB from C on MS
Windows has not been investigated, but should be possible using proprietary APIs.

Accessing the serial port or USB endpoints from Python is more straightforward
thanks to the cross platform libraries PySerial and PyUSB.

¢ TinyFrame implementation
The TinyFrame protocol library can be used directly in desktop C applications, and
it has been re-implemented in Python and other languages.

o« Higher-level GEX logic

The host side of the communication protocol described in Chapter 12 should be
implemented as a part of the library. This includes the reading and writing of
configuration files, unit list read-out, command payload building, and asynchronous
event parsing.

Additional utilities may be defined on top of this basic protocol support for the
command API of different GEX units, as described in Chapter 13. Those unit-specific
“drivers” are available in the provided Python library.

B 16.2 Python Library

The Python GEX library implements both a serial port access and raw access to USB
endpoints. Its development has been prioritized over the C library because of its potential

117

16. Client Software

to integrate with MATLAB, and because it promises to be the most convenient method
to interact with GEX thanks to the ease-of-use that comes with the Python syntax. This
library provides a high level API above the individual unit types, removing the burden of
building and parsing of the binary command payloads from the user.

The library is composed of a transport class, the core class gex.Client, and unit classes
(e.g., gex.I2C or gex.SPI).

Three transport implementations have been developed:

o gex.TrxSerialSync — virtual serial port access with polling for a response

e gex.TrxSerialThread — virtual serial port access with a polling thread and semaphore-
based notifications

e gex.TrxRawUSB — similar to gex.TrxSerialThread, but using raw USB endpoint
access

To use the wireless gateway, wrap either low-level transport in gex.DongleAdapter.
The adapter configures the gateway and converts the regular protocol to the right format.

Gateway connection example

transport = gex.DongleAdapter (gex.TrxRawUSB(remote=True), slave=42)
client = gex.Client(transport)

...

client.close()

B 16.2.1 Example Python Script

An example Python program displaying a test pattern on a LED matrix using the I2C-
connected driver chip IS31FL3730 is presented in Listing 3 as an illustration of the library
usage. A photo of the produced LED pattern can be seen in Figure 16.1.

First, a client instance is created, receiving the transport as an argument. We use a
with block in the example to ensure the transport is safely closed before the program ends,
even if that happens due to an exception; this is similar to the try-finally pattern, but
the de-initialization is done automatically. The client (and subsequently the transport)
can be closed manually by calling its .close() method. Inside the with block, the script
proceeds to create unit handles and use them to perform the desired task, in our case a
communication with the LED matrix driver over the I?C bus.

B 16.3 MATLAB integration

The Python library can be accessed from MATLAB scripts thanks to MATLAB’s two-way
Python integration [61]. Controlling GEX from MATLAB may be useful when additional
processing is required, e.g., with data from the ADC; however, in many cases, an open

118

16.4. C Library

#!1/bin/env python3
The I2C unit, called 't2c', is configured to use PB6 and PB7
import gex
with gex.Client(gex.TrxRawUSB()) as client:
bus = gex.I2C(client, 'i2c')
addr = 0x61
bus.write_reg(addr, 0x00, 0b00011000) # dual matriz
bus.write_reg(addr, 0xO0D, Ob00001110) # 34 m4
bus.write_reg(addr, 0x19, 64) # set brightness
matriz 1
bus.write_reg(addr, 0x01, [
OxAA, 0x55, OxAA, 0x55,
OxAA, 0xb5, OxAA, 0xb55
D
matriz 2
bus.write_reg(addr, OxOE, [
0xFF, 0x00, OxFF, 0x00,
OxFF, 0x00, OxFF, 0x00
D
update display
bus.write_reg(addr, 0x0C, 0x01)

Listing 3: An example Python program using the GEX client library

source alternative native to Python exists that could be used for the same purpose, such as
the NumPy and SciPy libraries [62].

The example in Listing 4 (and Figure 16.2) demonstrates the use of MATLAB to
calculate the frequency spectrum of an analog signal captured with GEX. The syntax
needed to use the serial port transport (instead of a raw access to USB endpoints) is shown
in a comment.

B 164 C Library

The C library is more simplistic than the Python one; it supports only the serial port
transport (UART or CDC/ACM) and does not implement asynchronous polling or the
unit support drivers. The implemented features—the transport, a basic protocol handler,
and payload building and parsing utilities—are sufficient for most applications, though less
convenient than the Python library.

This low-level library is intended for applications where the performance of the Python
implementation is insufficient, or where an integration with existing C code is required. The
full API can be found in the library header files. A C version of the example Python script
shown above, controlling an LED matrix driver, is presented in Listing 5. The payloads
in this example are represented as binary strings for simplicity. Two better methods of

119

16. Client Software

Figure 16.1: GEX Zero with the Micro Dot pHAT add-on board, showing a test pattern defined
in a Python script

payload construction are available: using C structs, or taking advantage of the Payload
Builder utility (bundled with TinyFrame).

B 16.4.1 Structure-based Payload Construction

The structure-based method utilizes C structs to access individual fields in the payload.
Simple payloads can be represented by a struct without problems, but payloads of a dynamic
length pose a challenge; we can either define a new struct for each required length, or,
when the variable-length array is located at the end of the payload, a struct with the
largest needed payload size is defined and the real length is then specified when sending
the message. The latter approach is illustrated in Listing 6.

B 16.4.2 Using the Payload Builder Utility

The Payload Builder utility offers a flexible solution to the construction of arbitrary
binary payloads. It is used in the GEX firmware to construct messages and events, along
with the binary settings storage content.

An example of Payload Builder’s usage is shown in Listing 7. We give it a byte buffer
and it then fills it with the payload values, taking care of buffer overflow, and advancing the
write pointer by the right number of bytes. The third parameter of pb_init () is optional,
a pointer to a function called when the buffer overflows; this callback can flush the buffer
and rewind it, or report an error.

Payload Builder is accompanied by Payload Parser, a tool doing the exact opposite.
While it is not needed in our example, we will find this utility useful when processing
command responses or events payloads. The full APT of those utilities can be found in their
header files.

120

16.4. C Library

/i The ADC unit, called 'adc', %s configured to use PAl1 as Channel O

Atrz = py.gex.TrzSerialThread (pyargs('port', '/dev/ttyUSB1',
VA "baud', 115200));

trx = py.gex.TrxRawUSB();

client = py.gex.Client(trx);

adc = py.gex.ADC(client, 'adc');

L = 1000; Fs = 1000;

adc.set_sample_rate(uint32(Fs)); / casting to unsigned integer

data = adc.capture(uint32(L));

data = double(py.array.array('f',data)); /7 numpy array to matlab format

Y = fft(data);

P2 = abs(Y/L);

P1 = P2(1:L/2+1);
P1(2:end-1) = 2%P1(2:end-1);
f = Fs*x(0:(L/2))/L;

plot (f,P1)
client.close()

Listing 4: Calling the Python GEX library from a MATLAB script

U P YEE_CHETIL_pY P

® | [# Editor - /homefondrasdevelrdp/gex_dient_py/mat_sampling.m ®
J | SPLpy | mat_sampling.m |+ |
1 wtransport = py.gex.TrxSerialThread(pyargs('port', '/dev/ttyUSELl', 'baud', 57600}];
2 - transpert = py.gex.TrxRawlSEl); Figure 1
3- client = py.gex.Client(transport); gu
4 - adc = py.gex.ADC(client, 'adc'); File Edit View Insert Tools Desktop Window Help £
5 — N
|- I DEEe| WA U9EL-|E(08| D
7 - Fe=10000;
=1
9- adc.set_sample_rate{uint32(Fs]); 80 -
10 - data = adc.captureiuint32(L));
11 - data = doublelpy.array.arrayi'f',datal);
12 70
13- ¥ = fftidata);
14 - P2 = absiv/L); 60 -
15 - Pl = P2(1:L/2+1);
16 - PL(2:end-1) = 2*P1(2:end-1);
17 50
12 - f o= Fe*x(E: (L/2))/L;
19 - plot(f,P1) 40 -
20
21 - client.close() Eg
22
20
10+ J |
i) LY, S | .JL WA T
1] 100 200 300 400 500

Command Window
== MaT_sampling
GEX connected, wersion string: GEX v@.1.0 on STM32F072-Discovery
- Found unit "ade' (tvpe ADC) @ callsion 1

Figure 16.2: A demonstration of the MATLAB/Python integration

121

16. Client Software

#include <signal.h>
#include <assert.h>
#include "gex.h"

void main(void)

{
// Initialize GEX and the I2C unit handle
GexClient *gex = GEX_Init("/dev/ttyACMO", 200);
assert (NULL != gex);
GexUnit #*bus = GEX_GetUnit(gex, "i2c", "I2C");
assert (NULL != bus);
// Configure the matriz driver
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x00\x18", 4);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0d\xOe", 4);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x19\x40", 4);
// Load data
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x01"
"\xAA\x55\xAA\x55\xAA\x55\xAA\x55", 11);
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0e"
"\xFF\x00\xFF\x00\xFF\x00\xFF\x00", 11);
// Update display
GEX_Send(bus, 2, (uint8_t*) "\x61\x00\x0c\x01", 4);
GEX_DelInit(gex) ;
}

Listing 5: An example C program (GNU C99) controlling GEX using the low-level GEX
library; this code has the same effect as the Python script shown in Listing 3, with payloads
built following the command tables from Chapter 13.

122

16.4. C Library

struct i2c_write {

uint16_t address;

uint8_t reg;

uint8_t value[8]; // largest needed payload size
} __attribute__((packed));

// 1-byte value

GEX_Send(bus, 2, (void *) &(struct i2c_write) {
.address = 0x61,
.reg = 0x00,
.value = {0x18},

}, 3+ 1); // use only 1 byte of the value array

// 8-byte walue
GEX Send(bus, 2, (void *) &(struct i2c_write) {

.address = 0x61,

.reg = 0x01,

.value = {OxAA, 0x55, OxAA, 0x55, OxAA, 0xb55, OxAA, 0x55},
}, 3+ 8);

Listing 6: The variable-length struct approach to payload building

uint8_t buff[20];
PayloadBuilder pb;

pb = pb_init(&buff, 20, NULL);
pb_ul6(&pb, 0x61);

pb_u8(&pb, 0x00);

pb_u8(&pb, 0x18);

GEX_Send(bus, 2, buff, pb_length(&pb));

pb_rewind (&pb); // reset the builder for a new frame

uint8_t screen[8] = {0xAA, 0x55, OxAA, 0x55, OxAA, O0x55, OxAA, 0x55};
pb_ul6(&pb, 0x61);

pb_u8(&pb, 0x01);

pb_buf (&pb, &screen, 8);
GEX_Send(bus, 2, buff, pb_length(&pb));

Listing 7: Building and sending payloads using the PayloadBuilder utility

123

124

Part IV

Results

125

126

Chapter 17

Example Applications

This chapter presents several applications of GEX. Those examples are the result of testing
during the firmware development, and do not cover the full range of features, but should
give the reader some idea about the possibilities.

B 171 Frequency Response Measurement

The frequency response of a filter may be measured with a combination of the ADC and
DAC units. The DAC is configured to generate a sine wave as a stimulus for the filter,
while the ADC captures the output waveform. By varying the generated frequency and
measuring the amplitude, we obtain a frequency response of the filter. If we measured both
the input and output, we could calculate the phase shift and produce a real Bode diagram.

Figure 17.1 depicts a simple test setup with a passive RC filter; its characteristics in the
low-pass and high-pass configuration, as obtained with GEX, are shown in Figure 17.2.

Figure 17.1: GEX Zero measuring a passive high-pass RC filter

127

17. Example Applications

3500 3000 1

3000
2500 -

2500

2000 -
2000

1500
1500 4

1000
1000

500

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Figure 17.2: Frequency response of two complementary passive RC filters, captured by GEX
controlled with a Python script. X: frequency (Hz), Y: peak-to-peak voltage as a raw ADC
word

B 17.2 Measuring CO, Concentration

The NDIR COg sensor MH-Z19B provides both a UART interface, and a pulse-width
modulated signal with a duty cycle proportional to the COs concentration. We used it
to verify the duty cycle measurement functionality of the frequency capture unit, and
also tested the USART unit with the digital interface. The measured concentration was
displayed using the SIPO unit on a 74HC595-drive red-green LED bargraph (Figure 17.3).

@
®
&
~
®
.

(a) : CO4 concentration measurement (b) : LED display

Figure 17.3: GEX firmware on the Discovery board reading COs concentration from the
MH-Z19B NDIR sensor and displaying the concentration on an LED bargraph

128

17.3. Controlling the “Micro Dot pHAT"

B 17.3 Controlling the “Micro Dot pHAT”

The “Micro Dot pHAT” add-on board was used to test GEX Zero’s compatibility with
pHATs. A photo of the pHAT on GEX Zero, together with example scripts, was presented
in Section 16.2.1. While this board does not provide any useful functionality beyond
displaying LED patterns, it is a proof that third-party add-ons for the RPi Zero may be
compatible with GEX, which introduces many interesting possibilities.

B 174 Capturing Transient Effects

The ADC unit supports level-based triggering. This was tested first by capturing the
charging waveform of a capacitor (Figure 17.4). As the triggering voltage had to be placed
above the noise floor, the triggering condition occurred when a part of the waveform already
passed. This was solved by using the pre-trigger feature to include past records at the
beginning of the capture.

A more interesting application of level triggering was discovered by accident during
a thunderstorm, when the electromagnetic interference from a (remote) lightning strike
caused a voltage spike to appear on an oscilloscope probe. Investigating the phenomenon,
we devised a simple “lightning trap” circuit (Figure 17.5). The resistor forms a discharge
path for the capacitor, which acts as a high-pass filter of sorts. The voltage on the ADC
input remains at about half of the operating range, and lightning strikes produce bursts of
voltage spikes which we can trigger on and record.

This method of lightning detection should be regarded as a mere curiosity without
much scientific value, and the circuit could certainly be improved to be safer and more
sensitive. Nonetheless, the simple setup proved functional and several lightning strikes were
automatically captured (Figure 17.6).

129

17. Example Applications

3500 A

3000 A

2500 A

2000 A

1500 A

1000 A

500 A

100 110 120 130 140

Figure 17.4: Capacitor charging waveform captured by the ADC unit, 50kS/s. X: sample
number, Y: ADC word. X grid: 200 us.

100 nF

| To the ADC

10 kQ

Figure 17.5: The “lightning trap” circuit

130

3250 4

3000

2750

2500 4

2250

2000 1

17501

1500 4

12504

T
300 400 500

T
600 700

3000 A
2800
2600 q
2400 4
2200 4
2000 'wMMWVNMW
1800

1600 4

1400

me»wm

350 400 450 500 550 600 650

3500 -

3000 -

2500 -

1500 4

1000

2000 wmwww»mv# AL

17.4. Capturing Transient Effects

T T T T T T
300 400 500 600 700 800

3000

2750 -

2500 -

2250 -

2000 -

17504

1500 4

1250 4

1000 +

300 400 500 600 700 800

Figure 17.6: Lightning strike-generated bursts of energy captured by the ADC unit. Note the
X-axis value 500 where the bursts start: that was the configured pre-trigger length

131

132

Chapter 18

Discussion

The objective of this work was to develop an extensible platform allowing the user to
interact with hardware modules and circuitry from high-level applications running on their
PC, in other words, to “bring the Raspberry Pi GPIO header to the PC”. It was important
to design the platform in such a way that a user without much experience with embedded
electronics and low level circuitry could still use it with a reasonable level of comfort and
confidence.

B 18.1 Solution Summary

We based the GEX platform around STM32 microcontrollers from ST Microelectronics and
developed the initial version for the STM32F072. This MCU was chosen for its native USB
Full Speed support, its interesting set of peripheral blocks, and because it is a relatively
recent model in the STM32F series, expecting it to be mature and without major flaws. A
wireless connection was planned together with USB and hardware UART, for which we
chose the nRF24L01+ transceiver from Nordic Semiconductor.

In total, three custom hardware modules have been developed and realized for the project:
GEX Hub, GEX Zero, and the wireless gateway. GEX Hub verified the designed schematic
and general functionality of the module. GEX Zero is more advanced and compact than
GEX Hub, also offering wireless connectivity for field experiments; we re-used the form
factor of the Raspberry Pi Zero for this board, which makes it compatible with many
existing enclosures and add-on boards. In addition to custom hardware, the GEX firmware
may be flashed to STM32 development boards (“STM32F072B-DISCO”).

The initial version of the project supports the following hardware buses and functions:

¢ Digital input with asynchronous pin change detection
o Digital output with pulse generation support

¢ Digital communication interfaces:

— SPI with up to 16 slaves and multicast support

I2C master

— USART with optional RS-485 driver support

— 1-Wire master, implementing the ROM Search algorithm

133

18. Discussion

¢ Frequency, pulse width, and duty cycle measurement
¢ Pulse counting

o PWM signal generation

e Multi-channel shift register loading

¢ NeoPixel RGB LED strip control

« Capacitive touch sensing

¢ Analog signal acquisition

— Immediate or averaged voltage measurement
— Isochronous sampling: fixed sample count, or a continuous stream

— Threshold-based triggering with a pre-trigger buffer
¢ Analog signal generation

— Sine, triangle, sawtooth, or rectangle waveform generation using DDS

— DC level output

We developed a transaction-based binary protocol that is used by all three communi-
cation interfaces. Software libraries implementing this protocol have been developed in
programming languages C and Python. It has been tested and verified that the Python
library may be integrated into MATLAB scripts, should the user need MATLAB, e.g., for
data processing or visualization.

To make the devices easy to reconfigure, the configuration options—such as, which fea-
tures to enable and what pins to use for them—are presented by entries in INI configuration
files. The user can edit these files in a virtual USB mass storage device with an emulated
FAT16 file system. Because the emulation relies on a certain pattern of behavior from the
host, it may not work reliably in all cases. This is mitigated by making the files accessible
also through the communication interface.

B 18.2 Results and Possible Applications

The designed device, and the accompanying software stack, make a practical tool for the
research and development in the field of embedded electronics, and may be used as a
learning aid to demonstrate the timings and format of the various supported hardware
buses. The inclusion of analog signal acquisition and generation features makes it possible to
measure the analog characteristics of electronic components, or acquire data from physical
phenomena.

The use in automation offers itself thanks to the programmatic control from high
level programming languages on the PC; this has an advantage over programming the
embedded firmware itself in that the user can focus on the behavior of the device they
are developing, rather than having to deal with low level implementation details, such as
memory management, or interrupt priority configuration. An inherent downside of this

134

18.3. Comparison with Existing Solutions

universal platform lies in greater latencies and lower performance than could be achieved
with a custom embedded system.

As the GEX platform is open source, with all source code and hardware materials made
available on GitHub [63], our solution may be freely expanded and adapted to support
other hardware platforms, to add new features, or to further optimize its performance.

B 18.3 Comparison with Existing Solutions

The integration of the PC with low-level hardware is an appealing idea that has been
explored in several alternative solutions, which we listed in Chapter 3. It is our belief that
the GEX project offers enough unique features and qualities to find its place among the
competition.

Compared to the Raspberry Pi, GEX is less powerful and cannot be used as a stand-
alone device without the host PC. However, it is more straightforward to use, the required
configuration is minimal, and it offers features not available in the Raspberry Pi, such as
the ADC and DAC.

The Bus Pirate excels as a bus analyzer and general purpose device and implements
features we did not explore in this project, while having much fewer GPIO pins, a lower
resolution of the ADC, and completely misses a DAC. The two projects serve a slightly
different purposes and appear to be complementary.

It is clear that GEX does not pose a real threat to professional tools in terms of
performance, but even at the prototype cost it is significantly more affordable. By integrating
many diverse features, GEX can replace several instruments at once, allowing the creation
of more advanced measurement systems in a compact form.

. 18.4 Limitations

Our solution was designed with the expectation that the users are familiar with programming,
and the requirement to develop a control script or application would not pose a problem.
However, that is not universally true, and some users who might benefit from the platform
will not be able to use it without a more user-friendly interface.

The STM32F072 microcontroller proved sufficient for the verification of the design,
and in many cases provides a sufficient performance. Future expansion of the project is,
unfortunately, limited by its flash and RAM capacity, which are already used at about 85 %,
based on the size of the binary image and the amount of allocated memory. Further, the
STM32F072 has a Cortex-MO core without any hardware support for floating point arith-
metics, making any calculations with those numbers slow and requiring additional library
functions, further increasing the firmware image size. The modules’ power consumption
has not been measured or optimized, but the inclusion of a wireless interface predisposes
them to be used in battery-powered applications; the microcontroller choice and the power
supply design may need to be revised for efficient battery operation.

135

18. Discussion

Another limitation concerns the support software; our client libraries have not been
tested on MS Windows, with Linux being the main development platform. The C library
uses POSIX API and UNIX-specific API to manage the serial port, which is not portable.
The Python library should work on MS Windows, provided libUSB is installed correctly.
Further, on MS Windows prior to version 10, the virtual COM port connection requires
the “STM32 Virtual COM port driver” to be manually installed and assigned in the Device
Manager.

B 18.5 Future Development

Future development of the project might focus on expanding the number of supported
hardware platforms in order to overcome the limitations of the used microcontroller model.
In particular the STM32L series of low-power devices should be investigated, as it may be
a better choice when a battery-based operation is needed. The hardware implementation
should further be revised to maximize power efficiency.

The client libraries need to be tested on other operating systems, and the C library may
be expanded to provide a higher level of comfort to the user. The client library could further
be reimplemented in more programming languages, such as Java or C#, and graphical
applications could be developed to make GEX more approachable to users less familiar
with programming.

GEX Zero, with the Raspberry Pi Zero form factor, introduced the possibility of using
Raspberry Pi add-on boards. It would be interesting to test the compatibility with more
such existing boards, and further to explore the possibility of designing custom ones. An
add-on board could, for instance, add access to the DALI bus, RS-485, CAN, or Ethernet.

136

Chapter 19

Conclusion

We have developed an open-source software and hardware platform providing high-level
user applications running on a PC with access to GPIO pins, common hardware buses, and
signal acquisition and generation functions.

The platform consists of a FreeRTOS-based firmware for the STM32F(072 microcon-
troller, custom hardware module designs (including realized prototypes), and support
software libraries for programming languages C and Python, the latter also compatible
with MATLAB. The firmware may be used with the custom hardware, or with existing
STM32 development boards.

The devices are connected to the PC by one of three interfaces: USB as a virtual COM
port or with raw endpoint access, a hardware UART, or a radio link with the nRF24L.01+
transceiver. Configuration is performed by editing INI files exposed in an emulated FAT16
file system through the USB connection, or programmatically.

The developed platform can be used as an learning aid, as an inexpensive development tool
replacing professional laboratory equipment, or for automation purposes, taking advantage
of its hardware interfacing capabilities to connect to multiple sensors and actuators.

Future development should focus on expanding support to other MCU models, adding
new features, improving the software libraries, and providing a more user-friendly control
interface.

137

138

Bibliography

[1] Seeed Technology Co.,Ltd. Bus Pirate v4. URL: https://www.seeedstudio.com/Bus-
Pirate-v4-p-740.html (visited on 05/12/2018).

[2] Tan Lesnet. Bus Pirate. URL: http://dangerousprototypes.com/docs/Bus_Pirate
(visited on 05/20/2018).

[3] National Instruments. I°C/SPI Interface Device. URL: https://www.ni.com/en-
gb/shop/select/i2¢c-spi-interface-device (visited on 05/12/2018).

[4] National Instruments. USB-6008. URL: http://www.ni.com/en-gb/support/model.
usb-6008.html (visited on 05/12/2018).

[5] Total Phase, Inc. USB-6008 product page. URL: https://www.totalphase . com/
products/aardvark-i2cspi/ (visited on 05/12/2018).

[6] USB Implementers Forum, Inc. Universal Serial Bus Specification. Tech. rep. 2000.
URL: http://www.usb.org/developers/docs/usb20_docs/ (visited on 05/12/2018).

[7] Craig Peacock. USB in a NutShell. URL: https : //www . beyondlogic . org/
usbnutshell (visited on 05/12/2018).

[8] MQP Electronics Ltd. USB Made Simple. 2008. URL: http://www.usbmadesimple.
co.uk/ (visited on 05/12/2018).

[9] Microsoft Corporation. Windows 2000 Professional Resource Kit / USB Func-
tions. 2008. URL: https://docs .microsoft.com/en-us/previous-versions/
windows/it-pro/windows-2000-server/cc939102(vY3dtechnet.10) (visited on
05/12/2018).

[10] USB Implementers Forum, Inc. USB Class Codes. Tech. rep. 2016. URL: http :
//www.usb.org/developers/defined_class (visited on 05/12/2018).

[11] pid.codes, a registry of USB PID codes for open source hardware projects. URL:
http://pid.codes/ (visited on 05/12/2018).

[12] EEVblog Electronics Community Forum. Driving the 1K5 USB pull-up resistor on
D+. URL: https://www.eevblog.com/forum/projects/driving-the-1k5-usb-
pull-up-resistor-on-d/ (visited on 05/12/2018).

[13] USB Implementers Forum, Inc. USB Mass Storage Class, Specification Overview. Tech.
rep. 2010. URL: http://www.usb.org/developers/docs/devclass_docs/Mass_
Storage_Specification_Overview_v1.4_2-19-2010.pdf (visited on 05/12/2018).

139

https://www.seeedstudio.com/Bus-Pirate-v4-p-740.html
https://www.seeedstudio.com/Bus-Pirate-v4-p-740.html
http://dangerousprototypes.com/docs/Bus_Pirate
https://www.ni.com/en-gb/shop/select/i2c-spi-interface-device
https://www.ni.com/en-gb/shop/select/i2c-spi-interface-device
http://www.ni.com/en-gb/support/model.usb-6008.html
http://www.ni.com/en-gb/support/model.usb-6008.html
https://www.totalphase.com/products/aardvark-i2cspi/
https://www.totalphase.com/products/aardvark-i2cspi/
http://www.usb.org/developers/docs/usb20_docs/
https://www.beyondlogic.org/usbnutshell
https://www.beyondlogic.org/usbnutshell
http://www.usbmadesimple.co.uk/
http://www.usbmadesimple.co.uk/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc939102(v%3dtechnet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc939102(v%3dtechnet.10)
http://www.usb.org/developers/defined_class
http://www.usb.org/developers/defined_class
http://pid.codes/
https://www.eevblog.com/forum/projects/driving-the-1k5-usb-pull-up-resistor-on-d/
https://www.eevblog.com/forum/projects/driving-the-1k5-usb-pull-up-resistor-on-d/
http://www.usb.org/developers/docs/devclass_docs/Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf
http://www.usb.org/developers/docs/devclass_docs/Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf

Bibliography

[14]

USB Implementers Forum, Inc. USB Mass Storage Class, Bulk-Only Transport.
Tech. rep. 1999. URL: http://www.usb.org/developers/docs/devclass_docs/
usbmassbulk_10.pdf (visited on 05/12/2018).

Discussion in a USB storage driver development mailing list (site defunct, available
via Archive.org). 2004. URL: https://lists.one-eyed-alien.net/pipermail/usb-
storage/2004-September/000795.html (visited on 05/12/2018).

Jan Axelson. Mass Storage FAQ. 2013. URL: http:// janaxelson . com/mass _
storage_faq.htm (visited on 05/12/2018).

USB Implementers Forum, Inc. Class definitions for Communication Devices 1.2.
Tech. rep. 2010. URL: http://www.usb.org/developers/docs/devclass_docs/
CDC1.2_WMC1.1_012011.zip (visited on 05/12/2018).

USB Implementers Forum, Inc. USB Interface Association Descriptor, Device Class
Code and Use Model. Tech. rep. 2003. URL: http://www.usb.org/developers/docs/
whitepapers/iadclasscode_r10.pdf (visited on 05/12/2018).

Real Time Engineers Ltd. FreeRTOS Ports. URL: https://www . freertos.org/
a00090.html (visited on 05/12/2018).

The FreeRTOS™ Reference Manual. Real Time Engineers Ltd., 2018. URL: https://
www . freertos. org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
(visited on 05/12/2018).

Richard Barry. Mastering the FreeRTOS™ Real Time Kernel. A Hands-On Tuto-
rial Guide. Real Time Engineers Ltd., 2016. URL: https://www.freertos.org/
Documentation/161204_Mastering_the_FreeRTOS_Real _Time_Kernel-A_Hands-
On_Tutorial_Guide.pdf (visited on 05/12/2018).

Real Time Engineers Ltd. How FreeRTOS Works: FreeRTOS Implementation. URL:
https://www.freertos.org/implementation/main.html (visited on 05/12/2018).

Wikipedia contributors. Comparison of File Systems: OS Support. URL: https :
//en.wikipedia.org/wiki/Comparison_of _file_systems#0S_support (visited
on 05/12/2018).

Microsoft Corporation. How FAT Works. 2009. URL: https://docs.microsoft.
com/en-us/previous - versions /windows /it - pro / windows - server - 2003 /
cc776720(v=ws.10) (visited on 05/12/2018).

Jack Dobiash. FAT16 Structure Information. 1999. URL: http://home.teleport.
com/~brainy/fat16.htm (visited on 05/12/2018).

LKT Software. FAT16 File System. 1999. URL: http://www.maverick-os.dk/
FileSystemFormats/FAT16_FileSystem.html (visited on 05/12/2018).

Bob Eager. A tutorial on the FAT file system. 2017. URL: http://www.tavi.co.uk/
phobos/fat.html (visited on 05/12/2018).

Microsoft Corporation. FAT: General Overview of On-Disk Format. Tech. rep. 2000.
URL: https://staff.washington.edu/dittrich/misc/fatgen103.pdf (visited on
05/12/2018).

vinDaci. Long Filename Specification. 1998. URL: http://home . teleport . com/
~brainy/lfn.htm (visited on 05/12/2018).

140

http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf
http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf
https://lists.one-eyed-alien.net/pipermail/usb-storage/2004-September/000795.html
https://lists.one-eyed-alien.net/pipermail/usb-storage/2004-September/000795.html
http://janaxelson.com/mass_storage_faq.htm
http://janaxelson.com/mass_storage_faq.htm
http://www.usb.org/developers/docs/devclass_docs/CDC1.2_WMC1.1_012011.zip
http://www.usb.org/developers/docs/devclass_docs/CDC1.2_WMC1.1_012011.zip
http://www.usb.org/developers/docs/whitepapers/iadclasscode_r10.pdf
http://www.usb.org/developers/docs/whitepapers/iadclasscode_r10.pdf
https://www.freertos.org/a00090.html
https://www.freertos.org/a00090.html
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/implementation/main.html
https://en.wikipedia.org/wiki/Comparison_of_file_systems#OS_support
https://en.wikipedia.org/wiki/Comparison_of_file_systems#OS_support
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc776720(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc776720(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc776720(v=ws.10)
http://home.teleport.com/~brainy/fat16.htm
http://home.teleport.com/~brainy/fat16.htm
http://www.maverick-os.dk/FileSystemFormats/FAT16_FileSystem.html
http://www.maverick-os.dk/FileSystemFormats/FAT16_FileSystem.html
http://www.tavi.co.uk/phobos/fat.html
http://www.tavi.co.uk/phobos/fat.html
https://staff.washington.edu/dittrich/misc/fatgen103.pdf
http://home.teleport.com/~brainy/lfn.htm
http://home.teleport.com/~brainy/lfn.htm

[40]

[41]

Bibliography

ARM Limited. Arm Mbed DAPLink. 2018. URL: https://github. com/ARMmbed/
DAPLink (visited on 05/12/2018).

NKC Electronics. Retrofitting AutoReset feature into an old Arduino serial board.
URL: https://playground.arduino.cc/Learning/AutoResetRetrofit (visited on
05/13/2018).

SD Group. SD Specifications, Part 1: Physical Layer Simplified Specification. Tech.
rep. 2010. URL: https://www.cs.utexas.edu/~simon/395t_os/resources/Part_
1_Physical _Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
(visited on 05/13/2018).

NXP Semiconductors. I2C-bus specification and user manual. 2014. URL: https:
//www.nxp.com/docs/en/user-guide/UM10204.pdf (visited on 05/12/2018).

Jared Becker Jonathan Valdez. Understanding the I2C Bus. Tech. rep. 2015. URL:
http://www.ti.com/lit/an/slva704/slva704.pdf (visited on 05/12/2018).

Dallas Semiconductor. AN214: Using a UART to Implement a 1-Wire Bus Master.
Tech. rep. URL: https://www.maximintegrated.com/en/app-notes/index.mvp/
id/214 (visited on 05/13/2018).

Dallas Semiconductor. DS18520 High Precision 1-Wire Digital Thermometer. Tech.
rep. URL: https://datasheets . maximintegrated . com/en/ds/DS18S20 . pdf
(visited on 05/13/2018).

Dallas Semiconductor. AN162: Interfacing the DS18X20/DS1822 1-Wire Temper-
ature Sensor in a Micro-controller Environment. Tech. rep. URL: https://www.
maximintegrated.com/en/app-notes/index.mvp/id/162 (visited on 05/13/2018).

SiTime Corporation. AN10033: Frequency Measurement Guidelines for Oscillators.
Tech. rep. URL: https://www.sitime . com/api/gated/AN10033-Frequency -
Measurement-Guidelines-for-Oscillators.pdf (visited on 05/13/2018).

Paul Boven. “Increasing the resolution of reciprocal frequency counters”. In: Pro-
ceedings of the 50. VHF meeting in Weinheim. URL: https://www . febo . com/
pipermail/time-nuts/attachments/20071201/e7833af5/attachment . pdf (vis-
ited on 05/13/2018).

Maxim Integrated. AN1080: Understanding SAR ADCs: Their Architecture and Com-
parison with Other ADCs. Tech. rep. 2001. URL: https://pdfserv.maximintegrated.
com/en/an/AN1080.pdf (visited on 05/13/2018).

Eva Murphy and Colm Slattery. “All about direct digital synthesis”. In: Ask The
Application Engineer 33 (2004). URL: http: //www . analog . com / media /en/
analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-
synthesis.pdf.

ST Microelectronics. RM0091: STM32F0x1/STM32F0x2/STM32F0x8 reference man-
wal. 2017. URL: http://www.st.com/resource/en/reference_manual/dm00031936.
pdf (visited on 05/12/2018).

ST Microelectronics. STMS32L/ training: Touch Sensing Controller. Tech. rep.
2017. URL: http://www.st.com/resource/en/product _training/stm3214 _
peripheral_touchsense.pdf (visited on 05/12/2018).

141

https://github.com/ARMmbed/DAPLink
https://github.com/ARMmbed/DAPLink
https://playground.arduino.cc/Learning/AutoResetRetrofit
https://www.cs.utexas.edu/~simon/395t_os/resources/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
https://www.cs.utexas.edu/~simon/395t_os/resources/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://www.ti.com/lit/an/slva704/slva704.pdf
https://www.maximintegrated.com/en/app-notes/index.mvp/id/214
https://www.maximintegrated.com/en/app-notes/index.mvp/id/214
https://datasheets.maximintegrated.com/en/ds/DS18S20.pdf
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162
https://www.sitime.com/api/gated/AN10033-Frequency-Measurement-Guidelines-for-Oscillators.pdf
https://www.sitime.com/api/gated/AN10033-Frequency-Measurement-Guidelines-for-Oscillators.pdf
https://www.febo.com/pipermail/time-nuts/attachments/20071201/e7833af5/attachment.pdf
https://www.febo.com/pipermail/time-nuts/attachments/20071201/e7833af5/attachment.pdf
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf
http://www.st.com/resource/en/reference_manual/dm00031936.pdf
http://www.st.com/resource/en/reference_manual/dm00031936.pdf
http://www.st.com/resource/en/product_training/stm32l4_peripheral_touchsense.pdf
http://www.st.com/resource/en/product_training/stm32l4_peripheral_touchsense.pdf

Bibliography

[44]

[57]

[58]

ST Microelectronics. Touch Sensing Controller (TSC) presentation. Tech. rep. 2015.
URL: https://wenku.baidu.com/view/8472044a6137ee06eef9180c . html ?re=
view (visited on 05/12/2018).

ST Microelectronics. AN4299: Guidelines to improve conducted noise robustness on
STMS32F0 Series, STM32F3 Series, STM32L0 Series and STM32L/ Series touch
sensing applications. Tech. rep. 2018. URL: http://www.st.com/resource/en/
application_note/dm00085385.pdf (visited on 05/12/2018).

ST Microelectronics. AN4310: Sampling capacitor selection guide for MCU based
touch sensing applications. Tech. rep. 2015. URL: http://www.st.com/resource/en/
application_note/dm00087593.pdf (visited on 05/12/2018).

ST Microelectronics. AN4312: Guidelines for designing touch sensing applications
with surface sensors. Tech. rep. 2017. URL: http://www.st.com/resource/en/
application_note/dm00087990.pdf (visited on 05/12/2018).

ST Microelectronics. AN4316: Tuning a STMTouch-based application. Tech. rep. 2015.
URL: http://www.st.com/resource/en/application_note/dm00088471 . pdf
(visited on 05/12/2018).

USB Implementers Forum, Inc. USB Device Class Specification for Device Firmware
Upgrade. Tech. rep. 2004. URL: http://www.usb.org/developers/docs/devclass_
docs/DFU_1.1.pdf (visited on 05/17/2018).

Harald Welte and Stefan Schmidt and Tormod Volden. dfu-util. 2016. URL: http:
//dfu-util.sourceforge.net/ (visited on 05/17/2018).

ST Microelectronics. STSW-STM32102: STM32 Virtual COM Port Driver. URL:
http://www.st.com/en/development-tools/stsw-stm32102.html (visited on
05/17/2018).

ST Microelectronics. STM32Cube initialization code generator. URL: http://www.st.
com/en/development-tools/stm32cubemx.html (visited on 05/18/2018).

Ondrtej Hruska. TinyFrame, o library for building and parsing data frames for se-
rial interfaces. URL: https://github . com/MightyPork/TinyFrame (visited on
05/13/2018).

“IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (2008),
pp. 1-70. DoOI1: 10.1109/IEEESTD.2008.4610935.

Semtech Corporation. SX1276/77/78/79 datasheet. 2016. URL: https : / / www .
semtech . com/uploads/documents/DS_SX1276-7-8-9_W_APP_V5.pdf (visited
on 05/12/2018).

Nordic Semiconductor. nRF2/L01+ Single Chip 2.4GHz Transceiver Product Spec-
ification v1.0. 2008. URL: http://www.nordicsemi.com/eng/content/download/
2726 /34069 /file /nRF24L01P _Product _Specification_1_0.pdf (visited on
05/12/2018).

ST Microelectronics. Discovery kit with STM32F072RB MCU. URL: http://www.st.
com/en/evaluation-tools/32f072bdiscovery.html (visited on 05/16/2018).

Raspberry Pi Foundation. GPIO - Raspberry Pi Documentation. URL: https://
www . raspberrypi . org / documentation / usage / gpio / README . md (visited on

05/19/2018).

142

https://wenku.baidu.com/view/8472044a6137ee06eef9180c.html?re=view
https://wenku.baidu.com/view/8472044a6137ee06eef9180c.html?re=view
http://www.st.com/resource/en/application_note/dm00085385.pdf
http://www.st.com/resource/en/application_note/dm00085385.pdf
http://www.st.com/resource/en/application_note/dm00087593.pdf
http://www.st.com/resource/en/application_note/dm00087593.pdf
http://www.st.com/resource/en/application_note/dm00087990.pdf
http://www.st.com/resource/en/application_note/dm00087990.pdf
http://www.st.com/resource/en/application_note/dm00088471.pdf
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf
http://dfu-util.sourceforge.net/
http://dfu-util.sourceforge.net/
http://www.st.com/en/development-tools/stsw-stm32102.html
http://www.st.com/en/development-tools/stm32cubemx.html
http://www.st.com/en/development-tools/stm32cubemx.html
https://github.com/MightyPork/TinyFrame
https://doi.org/10.1109/IEEESTD.2008.4610935
https://www.semtech.com/uploads/documents/DS_SX1276-7-8-9_W_APP_V5.pdf
https://www.semtech.com/uploads/documents/DS_SX1276-7-8-9_W_APP_V5.pdf
http://www.nordicsemi.com/eng/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://www.nordicsemi.com/eng/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://www.st.com/en/evaluation-tools/32f072bdiscovery.html
http://www.st.com/en/evaluation-tools/32f072bdiscovery.html
https://www.raspberrypi.org/documentation/usage/gpio/README.md
https://www.raspberrypi.org/documentation/usage/gpio/README.md

Bibliography

Phil Howard. Raspberry Pi GPIO Pinout interactive diagram. URL: https://pinout.
xyz/ (visited on 05/19/2018).

ST Microelectronics. STM32F072x8/STMS32F072xB datasheet. 2017. URL: http://
www.st.com/resource/en/datasheet/stm32£072c8.pdf (visited on 05/12/2018).

The MathWorks, Inc. Using MATLAB with Python. URL: https://www.mathworks.
com/solutions/matlab-and-python.html (visited on 05/13/2018).

SciPy developers. SciPy.org. URL: https://www.scipy.org/ (visited on 05/13/2018).

Ondrej Hruska. GEX USB GPIO platform source code repository. 2018. URL: https:
//github.com/gexpander (visited on 05/21/2018).

143

https://pinout.xyz/
https://pinout.xyz/
http://www.st.com/resource/en/datasheet/stm32f072c8.pdf
http://www.st.com/resource/en/datasheet/stm32f072c8.pdf
https://www.mathworks.com/solutions/matlab-and-python.html
https://www.mathworks.com/solutions/matlab-and-python.html
https://www.scipy.org/
https://github.com/gexpander
https://github.com/gexpander

144

Appendices

145

146

1

151011

, Rev

1CS

GEX Hub Schemati

Appendix A.1

¥ € 2z T
YiodAyBikg umeld 90[ydS T Odl X3D\0Al XIONXIONA =]
jO_198US | 8102 G 61 2red
T 2%
uoisiney JaquinN 8zis ‘JURIBIO} AG BJe TVd PUe GTVd okejnfal
n 3y} Jo qny gSN 8y ul uondalo.d JUS1INIIBAO
anH X390 duy Im NS 01 oS v [9A8] SNOA U
ENN 01 ppA Buibuug uonendiuew Buunp Loys
e Juanalid 0] Juadelpe Jou are AG pue EAE
91942204ZENLS 0z JepesH 0z JapesH 0z JepesH
aTooE 0o | 4908 EAe i £ne P [&
1SN z o o ENE o
1NO 2S0/T4d S W IT N W LT ans 1] LT
100 9SO 9 '\i"550/04d ano 9T aNd op o1
NI OSO S ST0d o sTad o7 oT
= #T0d yTad S
|\ SR SLEd STad £10d L eTad oL 1% v
ano yTad e €T €T €T
= d 2T0d zrad ¥TVd
¥_SSA €Tad zT zT zT
|_| €9 | o €1ad T1od 114d €Tvd
€ SSA 21ad has T T
8T | —2an T Z14ad [T o otad o 0Tvd ot
0} aNp sSpuodas w_Q:OU e laye r_w_:m.::xw 1€ lem\/ otad TT9d 60d 6 69dd 6 6vd 6
I!m) 3iney = 3yBI| pijoS "218 uoedlpul I e 0tdd 80d 3 8dd 3 8vd g
UMO_QJ Ells ‘ul _um‘_wao 1081109 8jedipul 01 yse|} I <IDD> 8ad 6dd 10d " ,9d / Lvd "
alpopad *,wiyo dn-pess, - 37 J0redlpu| ano VEAE €T e 86d 90d 5 94d & ovd 5
= /8d G0d sad Svd
ano ¥_aan 9gd S S S
1 ¥9 | i~qan i 98d vOd 5 vad & ¥vd &
W\ nt_Luoor_|_ voor_L 6T | S-aan 2o Sad £0d e egd - evd z
a3 60| 80 10 <€ | 1-aan €ad rad d z cad z ¢vd z
AT EY oy 87 | van T €dd TOd o 14d o Tvd o
ENE T = Z8d 00d ogd ovd
e o] Tad ed 2d
— MO0 vS 08d
ay} pinoys uod gsn ay) oy pabbnid-a1 &5 7 STOd STvd 05 STV
a0 ued 32IA3P 3y} ‘Aressadauun alojaiay} = on < ¥T0d NTOMS/PTVd 5 <n
SI uonNQ payedIpap e pue uayo A1an g On Z €T0d OIAMS/ETVd o 5 <n
papaau jou s 191 pleH ‘A €°€ e shels 3 on se 210d +Q/eIvd ¢ n_nn_
11 asimiayio “1abbngap e Aq moj uid ayx = 110d -a/TTvd 4
TI0d___ 2§ i NG
mc, _:n MO|[e 0] pasn S| 101SISal © - 18S9y hii%e) TS 0TOd 0Tvd 53 0Tv.
. 60d 6vd .
30T 60d [01%4 f44 6vd
80d__6e | o°d 8vd =y —8vg
2] 1SN yia) < ,0d Lvd
d 8¢ 99d ovd (4 Lvd
ENE 90d /¢ %4 9vd
SOd __se] 22d SVd T ovd
{0BegPa3) [ENSIA € 40} 431 = 25— ¥od wvd 2 == ano
lojedlpul 84} 8AI18SqO s3]l BU0d $,X39 mon T €9d evd m<n
UlIm 821A8p gSnN mmw_ouw SSsew [enuiA sy} NUM 5 20d 2vd 5 N<M ano
a|qesIp 10 a|qeus 0} ysnd - uonng %007 59 £ 10d d & g uoor_ N1 \KRZal
on__/_quwam.;w 0od 8 1% O 5T ovd 9|
3 - en S AT V85010 e
avag ¢l
s
"¥n 0€ 1noge
Je 9|q16116au S| UaLIND SS0JD BY] "1SO|
aNo 186 1usaop pue pieoq syl 0} payoene . anNo anNo
18pPe0|100 ol —
Kes Ajfewsou Aew) reys os youeiq i weygosd e S210) %mmuzc_ m:_umu__wmnm:m AND | g adAL o1omn gsn
.mﬁmmw_“ﬂzw‘_gmﬂﬁhﬂ_ Mwmw“wwwwwuﬂﬁm_%um .hE pue ssauaia|dwod 10} z:o nwu:_u:_ ny as3
TdC a1 oI 100q O% aAowal - hQQEz.:OOm tOQ mc_EEm‘_mo‘_Q / m:an NOH n » ano
ano
Ao Juuidioo; - NG arA 2 Nas dg A
o
Td 9 S TSuN HNL'Y na 9 SNaA S c
oot OIaMs A Tt L R n 5d
STOMS 1 ENE 5
Td ENE 10£€-LE09TION
ENE
¥ € z 7 T

147

2

15101

, Revi

1CS

GEX Hub Schemati

Appendix A.2

v g z T
Y1odAyBINAG umelg Poayds Odl” Xx39\0dl XIO\XIO\A =]
10_199US | 8102 G 61 =eq
z v
uoisiney JaquinN ozIS
QnH X39
apiL
91942/04ZEWLS 0Z J9pesH 0z 1opesH 0z JapeaH
fTooE o 2498° e e e
ISuN 7 aNoD aNoD aNoD
~ G 81 —“po—— 81 RS 8T
N0 250 9 %bo%%wbm& EAE % EAE m EAE m
NI OSO S G104 = s1ad - TSuN_ =0y o
VSSA — 710d 2 v1ad o oLooa T — sy o
zT o Glad £10d £1ad STVd
ano v18d e €1 1 1
= d 210d z1ad YTvd
7 SSA e1ad zT zT zT
Tt vE __clad 110d 118d £1vd
€ SSA z19d T T T
ST | S—oon Crag [£geted 0T0d R otad i 0Tvd R
01 9np spuodes 8|dN0d € Jaye ysinBunxs il S5 oTag O£ Trad 60d 2 69d 2 6vd 2
M) iy = 1BI| PIIOS "0} LoiedIpUl v eay |6¢__otad 804 5 8dd : 8vd :
peojdn aji ‘uoiyeIado 1981100 2yeIPUI O} Use V-aan ooy 29 ead 70d 5 18d 5 Ivd 5
aipouiad *,awiyo dn-pels, - g3 Jorealpul ano VEAE €T 19 s8ad 904 9dd ovd
T = 48d =g /8d G0d 5 sad 9 Svd o
ano v_aan 99d g g g
RNITT Y9 | aan oqy 85 oad 70d = vad = vvd =
nt_| uoot__ uoot_| 6T | —qan oy L5 cad £0d v edd 4 evd z
T T o ~T ze | ¢- 95 vad Zod zad Zvd
a7 60| 80| o 1-aan €ad z z z
A e oy 8% | van oy 85 _¢ad T0d g 19d z vd Z
EAE U T vos (82 ead 00d ogd ovd
- oay [Lz__1ad vd €d Zd
ano 00T v8 9z odd
ano coSH 019 §od v | orod SIVd 5 GTva __aT S10}08UL02 3qed Jel / DAl
ms T & v10d MTOMSTVA i
° €10d OIaMS/ETVd
° -~ ISuN §0d__¢ ov___£1vd OIAMS
00T, Z10d +Q/2Tvd
¢S Ty ¢lod €5 Jiog -QITTvd 2L dg
T1od__2s i na
010d 0Tvd
0Tod 15 | o5of vy £ Olvd
60d__OF Zv___ 6vd
71 80d 8vd
80d___6¢ v 8vd
EAE 75 = /0d Lvd
d 8¢ (4 Lvd
¢ 1 90d ovd
CRERTS 22 ovd
SOd __se] 22d SVd e ow
{0BegPa3) [ENSIA € 40} 431 won 25— ¥od wvd 2 <<n ano
10}e21pul 8y} BAIBS]Q "S3YY BYL0D XD < €0d £vd =
Ul 01A3p BSN BBEIOIS SSeUW [ENYIA L) £d I 254 N R —— ane
3|qesIp J0 3|qeud 0} ysnd - uonng 307 d 10d Tvd d woor_| nr| KKRZA1
ano 19d 6 45 ovd Lvd T T
T isdsms 00d 8 v 0Ovd 9| 5o
en oLy v
uaal
o~ S50 VERE R o e
15 EAE
ane ane ane ano
T ano g adAL 011N gSN
- v L n N ny, gs3
00T 20 C . ano
o) ————— 9201 vZOI
01004 g4A Z NaHS 49 % g701 viol
) v S € Wa 9 -
HNL Y SNEA —
X1 UA
LT i S T n Sd
€AE =
10€-LE09TON
v € z 7 T

148

Appendix B.1: GEX Zero Schematics, Revision 1

¥ € 2z T
YodAYBIN_ Ag umeid [90Quas'0RZ XID\0RZ XIO\XIO\A =]
10 19US | 8T0C S 61 ?rd
T v
uosIney Jequinn azis
0RZ X39
apiL NS NS
JBPesH ZX0T I
ano .
— PESN AN JION - MO9S~ o7 6€
d T pasn 44N 41 AlUo OIdO - ISON STad 8 L€ FARE (€>0)
et et 9.1942/04ZE WIS €510 98 S < OSIN - Pesn RN 4 Aluo OIdO
otoL 60 9vd ve e S19d WA
NIs_wa 01009 __ 09 Wmmm WM —7 € 1€ Howm (rxy)
ano — 1 STV L 0E 62 rx1)
A\ el 1NG2S0/T4d (Ovanav) — 8¢ /¢ 9 W
100 350 9 | \is0/04d (ovarav) vy 9¢ G ¢
e a3 NI 3SO S (exy/0av) v vz €2 sgq 10
10V — (ex1oav) 2 12 < OSIN
vV SSA STed vd 78d
ano ane ¥ Plag |9 STad 0z 6T Saq 'SOW
A\ell 7SSA clad —%€ vldd ©av) — 8T /T B >m _
€9 | ¥E e€tad MOS N (0avidvod) 9T &I (XL 'NWV2)
< ESSA ared ———= ovd o 69d
oL zd Z SSA wad —== = ~ 0TVd
UMd ENE 1€ | T~ 0E Tiad (X4 NV2) WWd T T (WMd) €S 1
Fi TSSA 0T8d —=——c1e 86d Tad
Z id exd o 6
— 68d =29 6ad exL —Lad 8 L
ano vere er | v J9A 88d o sad otad 9 s s
TR oaq |55 /ad —r ¢ ad (TXL) vas
ano 79 | [~ 85 98d z 1 8y L4
nT_| uoot_| uooT, | S-S 58d g Sad NS Ene
== = = ¢_4dA ved —52 o Td T AT
8| 0 90 & T adA ead —2 mmn
] ¢ 1vaA zad = ENE
EAE T [Zad dniind oz1
007/1g>00T T8d —= Tad
o ﬁ 00T e] ¢dd 08d —57—0ad
ENE ™S
01008 ol Sd v | g NS (05 6T I
30 ¥TOd € 67 vLvd M 1OMS
SN Elod ¢] o OlaMSETY —or e Giams
Ztod +d/eTvd 4 Jemod Bulpkd Agsisenpen jnejep
13534 iod €S | 154 QMg iz d 8sn umou 0)sexsIBel 1P 0 Aem Ajuo ay)
ano Hod e @ og oTwy N85 PUBLILICO JO Uid 19501 OU SR +TO Trz=4u v
0TOd S v OlWd
oo 6w —y 6vd XL ongad EAE N A
wor [c— 80d 8w o ANOF—— ano
= = 12d Lvd = " ¥85s9 =5 = 30
[CH t M I ow . = SN y] NS
=— S0d S 2 o~ 13539 N oy e S5 & oS
VENE NANS 1 ¥od v ISON | @
avaa ¢i #0d Z 02 7vd 00T SO 9 z
ENE €0d evd OSIN | ©
ISON_N €d T | 3] el L £vd 0S| L& [
OSIN N ed 0l 9 Zvd o od 8
6 2 e s T €0E o NEEEN
<3 I 0vd
en
aNo
ano
D|__4|mv RBPERH X (0 ano ano
T AND | gadkL ooin gSN
ano w m XL ong3d :
ano coSH © STOMS OIaMS s as3
[" & T 2n ®
S SN 10 ane
00T, B @ ————— G20l V2Ol
NS oy ULSE ano a4 A & NaHs BO== Ve gr01 viol MW
) 4 9 _
T HNLY SNaA S
z SAE T AN 1 X1 uIn n
€ 5 e HUY T
EAE S
¥d £09TdOW
¥ € z T

149

Appendix B.2: GEX Zero Schematics, Revision 2

¥ € 2z T
YodAYBIN_ Ag umeid [90Quas'0RZ XID\0RZ XIO\XIO\A =]
10 19US | 8T0C S 61 ?rd
2 v
uosIney JoquinN 9ZIS
0RZ X39
apiL NS NS
JpeaH ZX0z Idd
ano ;
- PaSN FUN JION - %105~z o7 6€
d T pasn 44N 41 AlUo OIdO - ISON oTad 8 L€ FARE (€>0)
et et 9.1942/04ZE WIS €510 98 S < OSIN - Pesn AN 4 Aluo OIdO
oro_L 6oL 9vd ve oo VT8d [g
T T ————1 01009 0ad
NIs_wa 01008 09 | ooy WM —7 € 1€ 5 (rxy)
ano — 1 STV L 0E 62 rx1)
A\ el 1NG2S0/T4d (Ovanav) — 8¢ /¢ 9 W
100 350 9 | \is0/04d (ovarav) vy 9¢ G ¢
e a3 NI 3SO S (exy/0av) v vz €2 sgq 10
10V — (ex1oav) 2 12 < OSIN
vV SSA STed vd 78d
ano ane ¥ Plag |9 STad 0z 6T Saq 'SOW
A\ell 7SSA clad —%€ vldd ©av) — 8T /T B >m _
€9 | ¥E e€tad MOS N (0avidvod) 9T &I (XL 'NWV2)
€ SSA 09d = ovd 69d
oL zd G Trad ——¢Lad ~ U T 0TVd
UMd ENE 1€ | T~ 0E Tiad (X4 NV2) WWd T T (WMd) €S 1
Fi TSSA 0T8d —=——c1e 86d Tad
Z id exd o 6
— 68d =29 6ad exL —Lad 8 L
ano vere er | v J9A 88d o sad otad 9 s s
~ 65 /ad v € Ex-vas
¥_aan 9ad /8d
ano 79 | [~ 85 98d z 1
nt | uoot | uoot 6t €.dan s8d 7= o S EAE 8y L4
L 1 L1 2 Y, i
_LHO0T_L HOOL >— 2.aan vad oo d 9T oI
8| 0 90 & T adA ead —2 o
] he 1 Lvaa cad —= Nmn EAE
3007/18 00T T8d —Z—a] dniind oz1
o ﬁ 00T e] ¢dd 08d —57—0ad
ENE ™S
01008 ol Sd v | g NS (05 6T I
30 ¥TOd € 67 vLvd M 1OMS
SN Elod ¢] o OlaMSETY —or e Giams
Ztod +d/eTvd 4 Jemod Bulpkd Agsisenpen jnejep
13s3d aod €s 1T0d -amTvd Sv_ d8sn umous| 0}sexsifal e o 01 Aem Ajuo ayy
ano Hod e @ og oTwy N85 PUBLILICO JO Uid 19501 OU SR +TO Trz=4u v
0TOd S v OlWd
oo 6w —y 6vd XL ongad EAE N A
WOt T c— 80d 8w o ANOF—— ano
= = 12d Lvd = " 78559 =5 = 30
[CH t M I ow . = SN y] NS
=— S0d S 2 o~ 13539 N oy e S5 & oS
VENE NANS 1 ¥od v ISON | @
avaa ¢i #0d Z 02 7V 00T SO 9 z
ENE €0d evd OSIN | ©
ISON_N €d T | 3] el L £vd oSl L& [
OSIN N ed 0l 9 Zvd o od 8
6 2 e s T €0E o NEEEN
<3 I 0vd
en
aNo
ano
D|__4|mv RBPERH X (0 ano ano
T AND | gadkL ooin gSN
ano w m XL ong3d :
ano coSH © STOMS OIaMS s as3
[" & T 2n ®
S ST 10 ane
00T, _ @ ————i> 920! VOl
NS oy ULSE ano a4 A & NaHs BO== Ve gr01 viol MW
. v 9 -
T HNLY SNdA S
z SAE T AN 5 X1 UIA n
€ 5 e HUY T
EAE S
¥d £09TdOW
¥ € z T

150

Appendix C.1: Wireless Gateway Schematics, Revision 1

12 € z T
YodAYBIN_ Ag umeIGopaudsoIpey X39\0IPeY XIO\X3O\d =]
0 BaUS | 8T0¢ G 61 EEe
T v
uosiney RqunN azIS ZBPOH ANO
Renoeo ssopIM X3D 4
apiL T
X1 9ng3d
ano 7
ano NOO 9ng3d
z e 9 ——{ano
m St 00T S =
ano ~ 1SaN
ENE 23 o0loos _m MIONS
OIMS
Sl Jr 4
IN] N[010049
|_Hv %ﬂt o_e_g N1 () s_v & HE|_|_m>m
S;B3883282222
gNEERFPRONOUR®
= = o5
(S o
7| ¢ad 9 = ano
Z— ¢led = T > T
5 vied 0w B d 3
o Sted VadA —=—i¢ et <t
< 8w VSSA ano 8== O=
< 6w 1SN 2 ZHWg
X1'ON&83d, 08 | (v 9180€0TCENLS LNOS0 m SOHWMW ___Hx
S T NIOSO
Jamod BuipAd Aqsisanfen 1jnejep wa 23 ZTvd SIod] NI OSO
umous| 0}sexsifal Jes o 01 Aem Ajuo ayy N da €2 OIMS PTod 2 XL a3t
‘puewwod Jo uid 18891 0u Sey +T0 Trg44u QZO_O_\Sm Ve Z SSA €T0d € Xd a3
ENE ! GE | z SNLVIS Q31
EAE N T ENE 2 aan 1VEA ENE
ano ano 9 g @ < T
vessa |) 3% Q_ 209
e =x £ NS cEE3Ezasgass ©
13539 N | Tx Ik oS 918D€0THZENLS
0 205 5 | sow | @ en
oot v SO 9 losin | & s¢msmwmmw&%wuw
OSI L& | ano ans
™ L - g o7 ¥ s
ENE © INIW 2N S 1 o o IS
= @ B) 9| so| 0 ns ot
o = == = oty
dNo 3 |z uooT |U00T | UOT
py)
E e ENE
m
Relre Jorssa1 ano 12
907asn ano 5™
ano ans ans
ano e snaA SAan T ©A
| a10!1 VIOI TGz @
T 8201 V20| [g—r—=—2— +d
oL oL oLy, oL, uot ano £ Mvddd € | (1o
o128 avy ard Vi) - z 2
o) 3 1 en aNop+—5— 7S
X BN‘ uRIo = B N 4
XL 2 2 nt nt
va1 EATA7T a1 1a1 9 9
— = & HNI —
- o o _
o
uy M Q e encl 5 LNO g86EAT NI — Ran
32 3 > €€-686€dT 1N
C
2]

151

	I Introduction
	1 Motivation
	1.1 Expected Outcome

	2 Requirement Analysis
	2.1 Desired Features
	2.1.1 Interfacing Intelligent Modules
	2.1.2 Analog Signal Acquisition
	2.1.3 Analog Signal Output
	2.1.4 Logic Level Input and Output
	2.1.5 Pulse Generation and Measurement

	2.2 Connection to the Host Computer
	2.2.1 Communication Interface
	2.2.2 Configuration Files

	2.3 An Overview of Planned Features
	2.4 Microcontroller Selection
	2.5 Form Factor Considerations

	3 Existing Solutions
	3.1 Raspberry Pi
	3.2 Bus Pirate
	3.3 Professional DAQ Modules

	II Theoretical Background
	4 Universal Serial Bus
	4.1 Basic Principles and Terminology
	4.1.1 Pipes and Endpoints
	4.1.2 Transfer Types
	4.1.3 Interfaces and Classes
	4.1.4 Descriptors

	4.2 USB Physical Layer
	4.3 USB Classes
	4.3.1 Mass Storage Class
	4.3.2 CDC/ACM Class
	4.3.3 Interface Association: Composite Class

	5 FreeRTOS
	5.1 Basic FreeRTOS Concepts and Functions
	5.1.1 Tasks
	5.1.2 Synchronization Objects

	5.2 Stack Overflow Protection

	6 The FAT16 File System and Its Emulation
	6.1 The General Structure of the FAT File System
	6.1.1 Boot Sector
	6.1.2 File Allocation Table
	6.1.3 Root Directory

	6.2 FAT16 Emulation
	6.2.1 DAPLink Emulator
	6.2.2 Read Access
	6.2.3 Write Access
	6.2.4 File Name Change
	6.2.5 File Creation
	6.2.6 File Content Change

	7 Supported Hardware Buses
	7.1 UART and USART
	7.1.1 Examples of Devices Using UART

	7.2 SPI
	7.2.1 Examples of Devices Using SPI

	7.3 I2C
	7.3.1 Examples of Devices Using I2C

	7.4 1-Wire
	7.4.1 Examples of Devices Using 1-Wire

	7.5 NeoPixel

	8 Non-communication Hardware Functions
	8.1 Frequency Measurement
	8.2 Analog Signal Acquisition
	8.3 Waveform Generation
	8.3.1 Waveform Generation with DMA and a Timer
	8.3.2 Direct Digital Synthesis

	8.4 Touch Sensing

	III Implementation
	9 Conceptual Overview
	9.1 Physical User Interface
	9.2 GEX-PC Connection
	9.3 Controlling GEX
	9.4 Device Configuration
	9.4.1 INI File Format
	9.4.2 Configuration Files Structure

	10 Internal Application Structure
	10.1 Internal Structure Block Diagram
	10.2 Unit Life Cycle and Internal Structure
	10.3 Resource Allocation
	10.4 Settings Storage
	10.5 Message Passing
	10.6 Interrupt Routing
	10.7 FreeRTOS Synchronization Objects Usage
	10.7.1 Message and Job Queue
	10.7.2 Lock Objects

	11 Working with the GEX Source Code
	11.1 Porting to a New Platform

	12 Communication Protocol
	12.1 Binary Payload Structure Notation
	12.2 Frame Structure
	12.3 Message Listeners
	12.4 Designated Frame Types
	12.5 Bulk Read and Write Transactions
	12.5.1 Bulk Read
	12.5.2 Bulk Write
	12.5.3 Persisting the Changed Configuration to Flash

	12.6 Reading the List of Units
	12.7 Unit Requests and Reports
	12.7.1 Unit Requests
	12.7.2 Unit Reports

	13 Units Overview, Commands and Events Description
	13.1 General Notes
	13.1.1 Unit Naming
	13.1.2 Packed Pin Access

	13.2 Digital Output
	13.2.1 Digital Output Configuration
	13.2.2 Digital Output Commands

	13.3 Digital Input
	13.3.1 Digital Input Configuration
	13.3.2 Digital Input Events
	13.3.3 Digital Input Commands

	13.4 SIPO (Shift Register) Unit
	13.4.1 SIPO Configuration
	13.4.2 SIPO Commands

	13.5 NeoPixel Unit
	13.5.1 NeoPixel Configuration
	13.5.2 NeoPixel Commands

	13.6 SPI Unit
	13.6.1 SPI Configuration
	13.6.2 SPI Commands

	13.7 I2C Unit
	13.7.1 I2C Configuration
	13.7.2 I2C Commands

	13.8 USART Unit
	13.8.1 USART Configuration
	13.8.2 USART Events
	13.8.3 USART Commands

	13.9 1-Wire Unit
	13.9.1 1-Wire Configuration
	13.9.2 1-Wire Commands

	13.10 Frequency Capture Unit
	13.10.1 Value Conversion Formulas
	13.10.2 Frequency Capture Configuration
	13.10.3 Frequency Capture Commands

	13.11 ADC Unit
	13.11.1 ADC Configuration
	13.11.2 ADC Events
	13.11.3 ADC Commands

	13.12 DAC Unit
	13.12.1 DAC Configuration
	13.12.2 DAC Commands

	13.13 PWM Unit
	13.13.1 PWM Configuration
	13.13.2 PWM Commands

	13.14 Touch Sense Unit
	13.14.1 Touch Sense Configuration
	13.14.2 Touch Sense Events
	13.14.3 Touch Sense Commands

	14 Wireless Interface
	14.1 Modulations Overview
	14.1.1 On-Off Keying (OOK)
	14.1.2 Frequency Shift Keying (FSK)
	14.1.3 Gaussian Frequency Shift Keying (GFSK)
	14.1.4 Minimum-Shift Keying (MSK)
	14.1.5 Gaussian Minimum-Shift Keying (GMSK)
	14.1.6 LoRa Modulation

	14.2 Comparing SX1276 and nRF24L01+
	14.3 Wireless Link with the nRF24L01+
	14.3.1 The Wireless Gateway
	14.3.2 The Gateway Protocol
	14.3.3 Gateway Initialization Procedure

	15 Hardware Realization
	15.1 GEX on a STM32 Discovery Board
	15.1.1 Discovery STM32F072 Configuration and Pin Mapping

	15.2 GEX Hub
	15.2.1 GEX Hub Errata

	15.3 GEX Zero
	15.3.1 Pin Assignment

	15.4 GEX Zero Errata
	15.5 Wireless Gateway

	16 Client Software
	16.1 General Library Structure
	16.2 Python Library
	16.2.1 Example Python Script

	16.3 MATLAB integration
	16.4 C Library
	16.4.1 Structure-based Payload Construction
	16.4.2 Using the Payload Builder Utility

	IV Results
	17 Example Applications
	17.1 Frequency Response Measurement
	17.2 Measuring CO2 Concentration
	17.3 Controlling the ``Micro Dot pHAT''
	17.4 Capturing Transient Effects

	18 Discussion
	18.1 Solution Summary
	18.2 Results and Possible Applications
	18.3 Comparison with Existing Solutions
	18.4 Limitations
	18.5 Future Development

	19 Conclusion
	Bibliography

	Appendices
	A GEX Hub Schematics
	A.1 GEX Hub Revision 1
	A.2 GEX Hub Revision 2

	B GEX Zero Schematics
	B.1 GEX Zero Revision 1
	B.2 GEX Zero Revision 2

	C Wireless Gateway Schematics
	C.1 Wireless Gateway Revision 1

