|
|
|
#include "audio_task.hpp"
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <cstddef>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <deque>
|
|
|
|
#include <memory>
|
|
|
|
#include <variant>
|
|
|
|
|
|
|
|
#include "audio_sink.hpp"
|
|
|
|
#include "cbor.h"
|
|
|
|
#include "dac.hpp"
|
|
|
|
#include "esp_err.h"
|
|
|
|
#include "esp_heap_caps.h"
|
|
|
|
#include "esp_log.h"
|
|
|
|
#include "freertos/portmacro.h"
|
|
|
|
#include "freertos/projdefs.h"
|
|
|
|
#include "freertos/queue.h"
|
|
|
|
#include "pipeline.hpp"
|
|
|
|
#include "span.hpp"
|
|
|
|
|
|
|
|
#include "arena.hpp"
|
|
|
|
#include "audio_element.hpp"
|
|
|
|
#include "chunk.hpp"
|
|
|
|
#include "stream_event.hpp"
|
|
|
|
#include "stream_info.hpp"
|
|
|
|
#include "stream_message.hpp"
|
|
|
|
#include "sys/_stdint.h"
|
|
|
|
#include "tasks.hpp"
|
|
|
|
|
|
|
|
namespace audio {
|
|
|
|
|
|
|
|
namespace task {
|
|
|
|
|
|
|
|
static const char* kTag = "task";
|
|
|
|
static const std::size_t kStackSize = 24 * 1024;
|
|
|
|
static const std::size_t kDrainStackSize = 1024;
|
|
|
|
|
|
|
|
auto StartPipeline(Pipeline* pipeline, IAudioSink* sink) -> void {
|
|
|
|
// Newly created task will free this.
|
|
|
|
AudioTaskArgs* args = new AudioTaskArgs{.pipeline = pipeline, .sink = sink};
|
|
|
|
|
|
|
|
ESP_LOGI(kTag, "starting audio pipeline task");
|
|
|
|
xTaskCreate(&AudioTaskMain, "pipeline", kStackSize, args,
|
|
|
|
kTaskPriorityAudioPipeline, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto StartDrain(IAudioSink* sink) -> void {
|
|
|
|
auto command = new std::atomic<Command>(PLAY);
|
|
|
|
// Newly created task will free this.
|
|
|
|
AudioDrainArgs* drain_args = new AudioDrainArgs{
|
|
|
|
.sink = sink,
|
|
|
|
.command = command,
|
|
|
|
};
|
|
|
|
|
|
|
|
ESP_LOGI(kTag, "starting audio drain task");
|
|
|
|
xTaskCreate(&AudioDrainMain, "drain", kDrainStackSize, drain_args,
|
|
|
|
kTaskPriorityAudioDrain, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AudioTaskMain(void* args) {
|
|
|
|
// Nest the body within an additional scope to ensure that destructors are
|
|
|
|
// called before the task quits.
|
|
|
|
{
|
|
|
|
AudioTaskArgs* real_args = reinterpret_cast<AudioTaskArgs*>(args);
|
|
|
|
std::unique_ptr<Pipeline> pipeline(real_args->pipeline);
|
|
|
|
IAudioSink* sink = real_args->sink;
|
|
|
|
delete real_args;
|
|
|
|
|
|
|
|
std::optional<StreamInfo::Format> output_format;
|
|
|
|
|
|
|
|
std::vector<Pipeline*> elements = pipeline->GetIterationOrder();
|
|
|
|
std::size_t max_inputs =
|
|
|
|
(*std::max_element(elements.begin(), elements.end(),
|
|
|
|
[](Pipeline const* first, Pipeline const* second) {
|
|
|
|
return first->NumInputs() < second->NumInputs();
|
|
|
|
}))
|
|
|
|
->NumInputs();
|
|
|
|
|
|
|
|
// We need to be able to simultaneously map all of an element's inputs, plus
|
|
|
|
// its output. So preallocate that many ranges.
|
|
|
|
std::vector<MappableRegion<kPipelineBufferSize>> in_regions(max_inputs);
|
|
|
|
MappableRegion<kPipelineBufferSize> out_region;
|
|
|
|
std::for_each(in_regions.begin(), in_regions.end(),
|
|
|
|
[](const auto& region) { assert(region.is_valid); });
|
|
|
|
assert(out_region.is_valid);
|
|
|
|
|
|
|
|
// Each element has exactly one output buffer.
|
|
|
|
std::vector<HimemAlloc<kPipelineBufferSize>> buffers(elements.size());
|
|
|
|
std::vector<StreamInfo> buffer_infos(buffers.size());
|
|
|
|
std::for_each(buffers.begin(), buffers.end(),
|
|
|
|
[](const HimemAlloc<kPipelineBufferSize>& alloc) {
|
|
|
|
assert(alloc.is_valid);
|
|
|
|
});
|
|
|
|
|
|
|
|
bool playing = true;
|
|
|
|
bool quit = false;
|
|
|
|
while (!quit) {
|
|
|
|
if (playing) {
|
|
|
|
for (int i = 0; i < elements.size(); i++) {
|
|
|
|
std::vector<RawStream> raw_in_streams;
|
|
|
|
elements.at(i)->InStreams(&in_regions, &raw_in_streams);
|
|
|
|
RawStream raw_out_stream = elements.at(i)->OutStream(&out_region);
|
|
|
|
|
|
|
|
// Crop the input and output streams to the ranges that are safe to
|
|
|
|
// touch. For the input streams, this is the region that contains
|
|
|
|
// data. For the output stream, this is the region that does *not*
|
|
|
|
// already contain data.
|
|
|
|
std::vector<InputStream> in_streams;
|
|
|
|
std::for_each(raw_in_streams.begin(), raw_in_streams.end(),
|
|
|
|
[&](RawStream& s) { in_streams.emplace_back(&s); });
|
|
|
|
OutputStream out_stream(&raw_out_stream);
|
|
|
|
|
|
|
|
elements.at(i)->OutputElement()->Process(in_streams, &out_stream);
|
|
|
|
|
|
|
|
std::for_each(in_regions.begin(), in_regions.end(),
|
|
|
|
[](auto&& r) { r.Unmap(); });
|
|
|
|
out_region.Unmap();
|
|
|
|
}
|
|
|
|
|
|
|
|
RawStream raw_sink_stream = elements.front()->OutStream(&out_region);
|
|
|
|
InputStream sink_stream(&raw_sink_stream);
|
|
|
|
|
|
|
|
if (sink_stream.info().bytes_in_stream == 0) {
|
|
|
|
out_region.Unmap();
|
|
|
|
vTaskDelay(pdMS_TO_TICKS(100));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!output_format || output_format != sink_stream.info().format) {
|
|
|
|
// The format of the stream within the sink stream has changed. We
|
|
|
|
// need to reconfigure the sink, but shouldn't do so until we've fully
|
|
|
|
// drained the current buffer.
|
|
|
|
if (xStreamBufferIsEmpty(sink->buffer())) {
|
|
|
|
ESP_LOGI(kTag, "reconfiguring dac");
|
|
|
|
output_format = sink_stream.info().format;
|
|
|
|
sink->Configure(*output_format);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// We've reconfigured the sink, or it was already configured correctly.
|
|
|
|
// Send through some data.
|
|
|
|
if (output_format == sink_stream.info().format &&
|
|
|
|
!std::holds_alternative<std::monostate>(*output_format)) {
|
|
|
|
// TODO: tune the delay on this, as it's currently the only way to
|
|
|
|
// throttle this task's CPU time. Maybe also hold off on the pipeline
|
|
|
|
// if the buffer is already close to full?
|
|
|
|
std::size_t sent = xStreamBufferSend(
|
|
|
|
sink->buffer(), sink_stream.data().data(),
|
|
|
|
sink_stream.data().size_bytes(), pdMS_TO_TICKS(10));
|
|
|
|
if (sent > 0) {
|
|
|
|
ESP_LOGI(kTag, "sunk %u bytes out of %u (%d %%)", sent,
|
|
|
|
sink_stream.info().bytes_in_stream,
|
|
|
|
(int)(((float)sent /
|
|
|
|
(float)sink_stream.info().bytes_in_stream) *
|
|
|
|
100));
|
|
|
|
}
|
|
|
|
sink_stream.consume(sent);
|
|
|
|
}
|
|
|
|
|
|
|
|
out_region.Unmap();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
vTaskDelete(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::byte sDrainBuf[8 * 1024];
|
|
|
|
|
|
|
|
void AudioDrainMain(void* args) {
|
|
|
|
{
|
|
|
|
AudioDrainArgs* real_args = reinterpret_cast<AudioDrainArgs*>(args);
|
|
|
|
IAudioSink* sink = real_args->sink;
|
|
|
|
std::atomic<Command>* command = real_args->command;
|
|
|
|
delete real_args;
|
|
|
|
|
|
|
|
// TODO(jacqueline): implement PAUSE without busy-waiting.
|
|
|
|
while (*command != QUIT) {
|
|
|
|
std::size_t len = xStreamBufferReceive(sink->buffer(), sDrainBuf,
|
|
|
|
sizeof(sDrainBuf), portMAX_DELAY);
|
|
|
|
if (len > 0) {
|
|
|
|
sink->Send({sDrainBuf, len});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
vTaskDelete(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace task
|
|
|
|
|
|
|
|
} // namespace audio
|