Fork of Tangara with customizations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tangara-fw/src/audio/sink_mixer.cpp

302 lines
9.8 KiB

/*
* Copyright 2023 jacqueline <me@jacqueline.id.au>
*
* SPDX-License-Identifier: GPL-3.0-only
*/
#include "sink_mixer.hpp"
#include <stdint.h>
#include <cmath>
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "freertos/portmacro.h"
#include "freertos/projdefs.h"
#include "samplerate.h"
#include "stream_info.hpp"
#include "tasks.hpp"
static constexpr char kTag[] = "mixer";
static constexpr std::size_t kSourceBufferLength = 4 * 1024;
static constexpr std::size_t kInputBufferLength = 4 * 1024;
static constexpr std::size_t kReformatBufferLength = 4 * 1024;
static constexpr std::size_t kResampleBufferLength = kReformatBufferLength;
static constexpr std::size_t kQuantisedBufferLength = 2 * 1024;
namespace audio {
SinkMixer::SinkMixer(StreamBufferHandle_t dest)
: commands_(xQueueCreate(1, sizeof(Args))),
is_idle_(xSemaphoreCreateBinary()),
resampler_(nullptr),
source_(xStreamBufferCreate(kSourceBufferLength, 1)),
sink_(dest) {
input_stream_.reset(new RawStream(kInputBufferLength));
floating_point_stream_.reset(new RawStream(kReformatBufferLength));
resampled_stream_.reset(new RawStream(kResampleBufferLength));
quantisation_buffer_ = {
reinterpret_cast<std::byte*>(heap_caps_malloc(
kQuantisedBufferLength, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)),
kQuantisedBufferLength};
quantisation_buffer_as_ints_ = {
reinterpret_cast<int*>(quantisation_buffer_.data()),
quantisation_buffer_.size_bytes() / 4};
quantisation_buffer_as_shorts_ = {
reinterpret_cast<short*>(quantisation_buffer_.data()),
quantisation_buffer_.size_bytes() / 2};
tasks::StartPersistent<tasks::Type::kMixer>([&]() { Main(); });
}
SinkMixer::~SinkMixer() {
vQueueDelete(commands_);
vSemaphoreDelete(is_idle_);
vStreamBufferDelete(source_);
heap_caps_free(quantisation_buffer_.data());
if (resampler_ != nullptr) {
src_delete(resampler_);
}
}
auto SinkMixer::MixAndSend(InputStream& input, const StreamInfo::Pcm& target)
-> std::size_t {
if (input.info().format_as<StreamInfo::Pcm>() !=
input_stream_->info().format_as<StreamInfo::Pcm>()) {
xSemaphoreTake(is_idle_, portMAX_DELAY);
Args args{
.cmd = Command::kSetSourceFormat,
.format = input.info().format_as<StreamInfo::Pcm>().value(),
};
xQueueSend(commands_, &args, portMAX_DELAY);
xSemaphoreGive(is_idle_);
}
if (target_format_ != target) {
xSemaphoreTake(is_idle_, portMAX_DELAY);
Args args{
.cmd = Command::kSetTargetFormat,
.format = target,
};
xQueueSend(commands_, &args, portMAX_DELAY);
xSemaphoreGive(is_idle_);
}
Args args{
.cmd = Command::kReadBytes,
.format = {},
};
xQueueSend(commands_, &args, portMAX_DELAY);
auto buf = input.data();
std::size_t bytes_sent =
xStreamBufferSend(source_, buf.data(), buf.size_bytes(), portMAX_DELAY);
input.consume(bytes_sent);
return bytes_sent;
}
auto SinkMixer::Main() -> void {
OutputStream input_receiver{input_stream_.get()};
xSemaphoreGive(is_idle_);
for (;;) {
Args args;
while (!xQueueReceive(commands_, &args, portMAX_DELAY)) {
}
switch (args.cmd) {
case Command::kSetSourceFormat:
ESP_LOGI(kTag, "setting source format");
input_receiver.prepare(args.format, {});
break;
case Command::kSetTargetFormat:
ESP_LOGI(kTag, "setting target format");
target_format_ = args.format;
break;
case Command::kReadBytes:
xSemaphoreTake(is_idle_, 0);
while (!xStreamBufferIsEmpty(source_)) {
auto buf = input_receiver.data();
std::size_t bytes_received = xStreamBufferReceive(
source_, buf.data(), buf.size_bytes(), portMAX_DELAY);
input_receiver.add(bytes_received);
HandleBytes();
}
xSemaphoreGive(is_idle_);
break;
}
}
}
auto SinkMixer::HandleBytes() -> void {
InputStream input{input_stream_.get()};
auto pcm = input.info().format_as<StreamInfo::Pcm>();
if (!pcm) {
ESP_LOGE(kTag, "mixer got unsupported data");
return;
}
if (*pcm == target_format_) {
// The happiest possible case: the input format matches the output
// format already. Streams like this should probably have bypassed the
// mixer.
// TODO(jacqueline): Make this an error; it's slow to use the mixer in this
// case, compared to just writing directly to the sink.
auto buf = input.data();
std::size_t bytes_sent =
xStreamBufferSend(sink_, buf.data(), buf.size_bytes(), portMAX_DELAY);
input.consume(bytes_sent);
return;
}
// Work out the resampling ratio using floating point arithmetic, since
// relying on the FPU for this will be much faster, and the difference in
// accuracy is unlikely to be noticeable.
float src_ratio = static_cast<float>(target_format_.sample_rate) /
static_cast<float>(pcm->sample_rate);
// Loop until we don't have any complete frames left in the input stream,
// where a 'frame' is one complete sample per channel.
while (!input_stream_->empty()) {
// The first step of both resampling and requantising is to convert the
// fixed point pcm input data into 32 bit floating point samples.
OutputStream floating_writer{floating_point_stream_.get()};
if (pcm->bits_per_sample == 16) {
ConvertFixedToFloating<short>(input, floating_writer);
} else {
// FIXME: We should consider treating 24 bit and 32 bit samples
// differently.
ConvertFixedToFloating<int>(input, floating_writer);
}
InputStream floating_reader{floating_point_stream_.get()};
while (!floating_point_stream_->empty()) {
RawStream* quantisation_source;
if (pcm->sample_rate != target_format_.sample_rate) {
// The input data needs to be resampled before being sent to the sink.
OutputStream resample_writer{resampled_stream_.get()};
Resample(src_ratio, pcm->channels, floating_reader, resample_writer);
quantisation_source = resampled_stream_.get();
} else {
// The input data already has an acceptable sample rate. All we need to
// do is quantise it.
quantisation_source = floating_point_stream_.get();
}
InputStream quantise_reader{quantisation_source};
while (!quantisation_source->empty()) {
std::size_t samples_available;
if (target_format_.bits_per_sample == 16) {
samples_available = Quantise<short>(quantise_reader);
} else {
samples_available = Quantise<int>(quantise_reader);
}
assert(samples_available * target_format_.real_bytes_per_sample() <=
quantisation_buffer_.size_bytes());
std::size_t bytes_sent = xStreamBufferSend(
sink_, quantisation_buffer_.data(),
samples_available * target_format_.real_bytes_per_sample(),
portMAX_DELAY);
assert(bytes_sent ==
samples_available * target_format_.real_bytes_per_sample());
}
}
}
}
template <>
auto SinkMixer::ConvertFixedToFloating<short>(InputStream& in_str,
OutputStream& out_str) -> void {
auto in = in_str.data_as<short>();
auto out = out_str.data_as<float>();
std::size_t samples_converted = std::min(in.size(), out.size());
src_short_to_float_array(in.data(), out.data(), samples_converted);
in_str.consume(samples_converted * sizeof(short));
out_str.add(samples_converted * sizeof(float));
}
template <>
auto SinkMixer::ConvertFixedToFloating<int>(InputStream& in_str,
OutputStream& out_str) -> void {
auto in = in_str.data_as<int>();
auto out = out_str.data_as<float>();
std::size_t samples_converted = std::min(in.size(), out.size());
src_int_to_float_array(in.data(), out.data(), samples_converted);
in_str.consume(samples_converted * sizeof(int));
out_str.add(samples_converted * sizeof(float));
}
auto SinkMixer::Resample(float src_ratio,
int channels,
InputStream& in,
OutputStream& out) -> void {
if (resampler_ == nullptr || src_get_channels(resampler_) != channels) {
if (resampler_ != nullptr) {
src_delete(resampler_);
}
ESP_LOGI(kTag, "creating new resampler with %u channels", channels);
int err = 0;
resampler_ = src_new(SRC_LINEAR, channels, &err);
assert(resampler_ != NULL);
assert(err == 0);
}
auto in_buf = in.data_as<float>();
auto out_buf = out.data_as<float>();
src_set_ratio(resampler_, src_ratio);
SRC_DATA args{
.data_in = in_buf.data(),
.data_out = out_buf.data(),
.input_frames = static_cast<long>(in_buf.size()),
.output_frames = static_cast<long>(out_buf.size()),
.input_frames_used = 0,
.output_frames_gen = 0,
.end_of_input = 0,
.src_ratio = src_ratio,
};
int err = src_process(resampler_, &args);
if (err != 0) {
ESP_LOGE(kTag, "resampler error: %s", src_strerror(err));
}
in.consume(args.input_frames_used * sizeof(float));
out.add(args.output_frames_gen * sizeof(float));
}
template <>
auto SinkMixer::Quantise<short>(InputStream& in) -> std::size_t {
auto src = in.data_as<float>();
cpp::span<short> dest = quantisation_buffer_as_shorts_;
dest = dest.first(std::min(src.size(), dest.size()));
src_float_to_short_array(src.data(), dest.data(), dest.size());
in.consume(dest.size() * sizeof(float));
return dest.size();
}
template <>
auto SinkMixer::Quantise<int>(InputStream& in) -> std::size_t {
auto src = in.data_as<float>();
cpp::span<int> dest = quantisation_buffer_as_ints_;
dest = dest.first(std::min<int>(src.size(), dest.size()));
src_float_to_int_array(src.data(), dest.data(), dest.size());
in.consume(dest.size() * sizeof(float));
return dest.size();
}
} // namespace audio